不确定线性系统新的稳定性准则

2014-08-04 02:38:52廖慧敏谭满春
计算机工程与应用 2014年22期
关键词:上界时滞准则

廖慧敏,谭满春

暨南大学数学系,广州 510632

不确定线性系统新的稳定性准则

廖慧敏,谭满春

暨南大学数学系,广州 510632

1 引言

时滞现象经常存在于网络控制系统、自动化系统、通信系统、运输系统等许多动态系统中。由于时滞会导致系统的不稳定性和性能变差,因此时滞的稳定性得到了广泛的关注[1-25]。

为得到时滞系统的稳定性准则,许多学者提出了不同的方法[1-12]。文献[1-2]通过引入自由权矩阵来处理Lyapunov函数导数中的相关项,优势在于不必对交叉项进行处理,但引入过多的变量会增加计算的复杂度。文献[3-4]采用Jensen积分不等式对交叉项进行放大处理。文献[5-6]构造含有三重积分项的新型Lyapunov函数,并结合积分不等式法或自由权矩阵方法。文献[7-8]利用时滞中点法,用时滞区间的中点(h1+h2)/2把时滞区间分割成相等的两个区间,再充分利用积分不等式等方法。

基于上述研究成果,本文不同于文献[7-8],不再把时滞分割成相等的两区间,而用分割点h=λh1+(1-λ)h2将时滞区间分割成任意两段。通过构造新的Lyapunov函数,并结合积分不等式,得到了新的稳定性准则。本方法引入了状态向量x(t-h),含有更多的时滞区间信息。通过数值实例说明本文方法的有效性和较小的保守性。

本文符号说明:I表示单位矩阵,Rn表示n维欧式空间,Rn×m表示n×m矩阵,T表示矩阵转置,*表示矩阵相应的对称部分,对任意矩阵A,B,A>B表示矩阵A-B是正定矩阵。

2 问题描述

考虑如下不确定系统:

本文定理证明将用到如下引理:

3 主要结果

备注1系统最大允许时滞上界的大小与λ的精度有关。假设λ的精度为0.01,由于0<λ<1,那么λ的值是0.01,0.02,…,0.99。把每个λ的值作为已知数,由上述定理,利用MATLAB的LMI工具箱,可以求得相应的最大允许时滞上界,取这些最大允许时滞上界的最大值做为系统的最大允许时滞上界。为求得更大的系统最大允许时滞上界,可以提高λ的精度,但这样会增加计算的复杂度,需要更多的计算时间。

4 数值实例

例1考虑具有如下系数矩阵的不确定线性系统:

当假设λ的精度为0.1。当h1=0时,对不同的时滞变化率d,系统式(1)最大允许时滞上界h2值见表1。当d=0.1时,文献[15]的最大允许时滞上界为1.107 5,而由定理1,令λ=0.5,计算得到最大允许时滞上界为1.178 2。由表1知,与文献[14-15]相比,本文方法具有较小保守性。

表1 h 1=0时,对不同d的最大允许时滞上界

例2考虑具有如下系数矩阵的不确定线性系统:

假设λ的精度为0.01。当d=0.5,h1=0时,由定理1,系统式(1)在λ=0.55时取得系统的最大允许时滞上界h2=2.194 0。当d=0.5,h1=1时,系统式(1)在λ=0.31时取得系统的最大允许时滞上界h2=2.279 2,见表2。当d=0.2,h1=0时,系统在λ=0.48时取得最大允许时滞上界为3.293 6,见表3。由表2,3可知,在h1较小的情况下,与文献[7-8]相比,本文方法具有较小保守性。

表2 d=0.5时,对不同h1的最大允许时滞上界

表3 d=0.2,h1=0时,最大允许时滞上界

5 结论

本文研究了带有区间时滞的不确定线性系统的稳定性问题。利用时滞分割法,通过构造适当Lyapunov函数,并结合积分不等式,得到了不确定线性系统新稳定性的准则。数值实例表明,新的稳定性准则具有更小的保守性。

[1]Qiu Fang,Cui Baotong,Ji Yan.Further results on robust stability of neutral systems with mixed time-varying delays and nonlinear perturbations[J].Nonlinear Analysis:Real World Applications,2010,11(2):895-906.

[2]Liang Yuanxin.Robust stability for uncertain neutral systems with time-varying and distributed delays[C]//Seventh International Conference on Computational Intelligence and Security,2011:321-324.

[3]Sarabi F E,Momeni H R.Less conservative delay-dependent robust stability criteria for linear time-delay systems[C]// International Conference on Electronics Computer Telecommunications and Information Technology,2010:738-741.

[4]Ramakrishnan K,Ray G.Robust stability criteria for uncertain linear systems with interval time-varying delay[J].J Control Theory Appl,2011,9(4):559-566.

[5]Sun Jian,Chen Jie,Liu G P.Delay-range-dependent and rate-range-dependent stability criteria for linear systems with time-varying delays[C]//Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference,Shanghai,China,2009:251-256.

[6]Sun J,Liu G P,Chen J,et al.Improved stability criteria for linear systems with time-varying delay[J].IET Control Theory Appl,2010,4(4):683-689.

[7]Peng C,Tian Y C.Improved delay-dependent robust stability criteria for uncertain systems with interval timevarying delay[J].IET Control Theory Appl,2008,2(9):752-761.

[8]Zhao Xia,Song Jin,Tian Engang,et al.Delay-dependent stability analysis for linear system with time-varying delay:a PAM method[C]//Chinese Control and Decision Conference,2009:1422-1426.

[9]Zhang Ao,Xu Zhaodi,Liu Dong.New stability criteria for neutral systems with interval time-varying delays and nonlinear perturbations[C]//27th Chinese Control and Decision Conference,2011:2995-2999.

[10]Tan Manchun.Global asymptotic stability of fuzzy cellular neural networks with unbounded distributed delays[J]. Neural Processing Letters,2010,31(2):147-157.

[11]Tan Manchun.Exponential convergence behavior of fuzzy cellular neural network with distributed delay and timevarying coefficients[J].International Journal of Bifurcation and Chaos,2009,19(7):2455-2462.

[12]Tan M C,Su Z Y.Exponential stability analysis of neural networks with variable delays[J].International Journal of Bifurcation and Chaos,2010,20(5):1541-1549.

[13]Guo Liangdong,Gu Hong,Jun Xing,et al.Asymptotic and exponential stability of uncertain system with interval delay[J].Applied Mathematics and Computation,2012,218(19):9997-10006.

[14]Peng C,Tian Y C.Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J]. JournalofComputationalandAppliedMathematics,2008,214(2):480-494.

[15]Wang Cheng,Shen Yi.Improved delay-dependent robust stability criteria for uncertain time delay systems[J]. Applied Mathematics and Computation,2011,218(6):2880-2888.

[16]He Y,Wang Q,Lin C G,et al.Delay-range-dependent stability for systems with time-varying delay[J].Automatica,2007,43(2):371-376.

[17]Shao Hanyong.New delay-dependent stability criteria for systems with interval delay[J].Automatica,2009,45(3):744-749.

[18]Kwon O M,Park M J,Park J H,et al.New delay-partitioning approaches to stability criteria for uncertain neutral systems with time-varying delays[J].Journal of the Franklin Institute,2012,349(9):2799-2823.

[19]Qiu Fang,Cui Baotong,Ji Yan.A delay-dividing approach to stability of neutral systems with mixed delays and nonlinear perturbations[J].Applied Mathematical Modelling,2010,34(11):3701-3707.

[20]Liu Pinlin.A delay decomposition approach to robust stability analysis of uncertain systems with time-varying delay[J].ISA Transactions,2012,51(6):694-701.

[21]Chen Huabin.New delay-dependent stability criteria for uncertain stochastic neural networks with discrete interval and distributed delays[J].Neurocomputing,2013,101(4):1-9.

[22]Ramakrishnan K,Ray G.Robust stability criteria for a class of uncertain discrete-time systems with time-varying delay[J].Applied Mathematical Modelling,2013,37(3):1468-1479.

[23]Chen Huabin,Zhang Yong,Zhao Yang.Stability analysis for uncertain neutral systems with distributed delays[J]. Applied Mathematical and Computation,2012,218(23):11351-11361.

[24]Xia Nan,Jia Yingmin.Delay distribution dependent stability criteria for interval time-varying delay systems[J]. Journal of the Franklin Institute,2012,349(10):3142-3158.

[25]Zheng Min,Fei Minrui,Li Yang.Improved stability criteria for uncertain delayed neural networks[J].Neurocomputing,2012,98(3):34-39.

LIAO Huimin,TAN Manchun

Department of Mathematics,Jinan University,Guangzhou 510632,China

The stability problem for uncertain linear systems with interval time-varying delay is studied.Based on the delaydividing approach,the delay interval is partitioned into two subintervals.By constructing an appropriate Lyapunov function and using integral inequalities,some delay-dependent stability criteria are obtained.Numerical examples are given to illustrate the effectiveness of the results.

uncertain linear systems;Lyapunov function;delay-dependent;stability

研究了带有区间时滞的不确定系统的稳定性问题。通过采用时滞分割法,把时滞区间分割成任意两小段,并构造恰当的Lyapunov函数,利用积分不等式,得到了新的时滞相关的稳定性准则。通过数值例子验证了结果的有效性。

不确定线性系统;Lyapunov函数;时滞依赖;稳定性

A

TP13;O213.2

10.3778/j.issn.1002-8331.1212-0016

LIAO Huimin,TAN Manchun.New stability criteria for uncertain linear systems.Computer Engineering and Applications,2014,50(22):256-259.

广东省自然科学基金(No.S201201001036);广东省科学计划项目(No.2009B011400046)。

廖慧敏(1987—),男,硕士研究生,主要研究方向:系统优化与控制;谭满春(1968—),男,教授,硕士生导师,主要研究方向:系统优化与控制。E-mail:tanmc@jnu.edu.cn

2012-12-03

2013-02-18

1002-8331(2014)22-0256-04

CNKI网络优先出版:2013-03-13,http://www.cnki.net/kcms/detail/11.2127.TP.20130313.0950.011.html

猜你喜欢
上界时滞准则
带有时滞项的复Ginzburg-Landau方程的拉回吸引子
具非线性中立项的二阶延迟微分方程的Philos型准则
一个三角形角平分线不等式的上界估计
一道经典不等式的再加强
基于Canny振荡抑制准则的改进匹配滤波器
一图读懂《中国共产党廉洁自律准则》
一阶非线性时滞微分方程正周期解的存在性
Nekrasov矩阵‖A-1‖∞的上界估计
一类时滞Duffing微分方程同宿解的存在性
混凝土强度准则(破坏准则)在水利工程中的应用