嵌合型口蹄疫病毒样颗粒组装研究

2014-04-29 16:09敖大等
安徽农业科学 2014年13期
关键词:原核表达

敖大等

摘要 [目的]为研究和制备多联或多价口蹄疫病毒样颗粒疫苗奠定基础。[方法]将FLAG序列通过融合PCR技术插入口蹄疫结构蛋白VP1GHloop可变区,并通过大肠杆菌原核表达技术表达口蹄疫病毒衣壳蛋白VP0、VP3和嵌合型VP1,在体外组装出嵌合FLAG外源多肽的口蹄疫病毒样颗粒。[结果]大肠杆菌表达的口蹄疫衣壳蛋白主要以可溶性存在,在缓冲体系中融合标签被切除衣壳蛋白VP0、VP3和FLAGVP1组装成病毒样颗粒,其大小约25 nm左右。FLAG序列成功插入GHloop可变区第150-151氨基酸位点之间,外源多肽的插入没有影响衣壳蛋白VP1的空间结构。[结论]口蹄疫loop可变区引入外源抗原是可行的,但外源多肽的大小及理化性质会影响病毒样颗粒的组装效率。

关键词 口蹄疫病毒;原核表达;GHloop;嵌合型病毒样颗粒

中图分类号 S855.99 文献标识码 A 文章编号 0517-6611(2014)13-03902-05

Abstract [Objective] The research aimed to lay the foundation for studying and preparing multiple or polyvalent viruslike particle vaccine of foot and mouth disease virus. [Method] FLAG sequence was inserted into variable region of structural protein VP1 GHloop of foot and mouth disease virus. Capsid proteins VP0, VP3 and chimeric VP1 of foot and mouth disease virus were expressed in Escherichia coli prokaryotic expression system. And the viruslike particles of foot and mouth disease virus with FLAG exogenous polypeptide was assembled in vitro. [Result] The capsid proteins of foot and mouth disease virus expressed by E. coli were mainly dissoluble. The fusion protein was cut in the buffer system, and capsid proteins VP0, VP3 and FLAG VP1 were assembled into viruslike particle (the size of about 25 nm). FLAG sequence was successfully inserted into 150-151 amino acid sites of variable region of GHloop. The insertion of exogenous polypeptide didnt influence the spatial structure of capsid protein VP1. [Conclusion] It was feasible to insert exogenous antigen into variable region of GHloop, but the size and physical and chemical characteristics of exogenous polypeptide would influence the assembly efficiency of viruslike particle.

Key words Foot and mouth disease; Prokaryotic expression; GHloop; Chimeric viruslike particles

口蹄疫是由口蹄疫病毒引起的一种急性、热性、高度接触性传染病,其易感动物主要是牛、羊等偶蹄动物。口蹄疫在亚洲、非洲和中东以及南美洲均有发生,造成了巨大的经济损失,被世界卫生组织划分为A类疾病[1-2]。目前,预防控制该病的疫苗主要是灭活苗和弱毒苗,但全病毒疫苗存在散毒风险且在交叉免疫保护方面存在不足。由于口蹄疫病毒有7个血清型、65个亚型[3],在特定的口蹄疫感染区域常伴有多种抗原变异体共同流行,因此迫切需要研发新型、高效的多价口蹄疫疫苗。

对口蹄疫病毒结构蛋白的研究发现,其衣壳蛋白GHloop突出于病毒衣壳表面[4],包含口蹄疫病毒的主要抗原表位[5-8],且后续研究表明loop环抗原表位合成肽能够与相关抗体相互作用[9]。研究表明,loop环中保守的ArgGlyAsp(RGD)序列是细胞整合素识别位点,RGD序列与口蹄疫病毒侵入细胞密切相关[10-12],且RGD序列两侧的残基高度可变。因此,研究人员在重组亚洲I型口蹄疫病毒GHloop环中的150~151氨基酸之间插入含有10个氨基酸的保守序列(RTSRRGDAAA)成功完成病毒拯救。将FLAG外源多肽嵌入口蹄疫衣壳蛋白GHloop环RGD基序上游,成功构建了FLAG标记的重组口蹄疫病毒[13]。O型口蹄疫病毒中和表位插入亚洲I型口蹄疫GHloop可变区成功构建出多表位重组口蹄疫病毒,诱导机体能产生抗2种血清型的中和抗体[14]。以上研究均证实口蹄疫病毒GHloop可变区耐受外源多肽的插入。

病毒样颗粒(Virus like particles,VLPs)作为最接近自然病毒粒子但不含病毒基因的类病毒颗粒在多个研究领域的突破性进展尽显其显著优势,尤其在疫苗研究及应用领域。VLPs重复且有序排列的抗原表位能够诱导近乎病毒自然感染的免疫力,被认为是目前最具优势的候选疫苗。目前有多种病毒都进行了病毒样颗粒疫苗的研究,如口蹄疫病毒[15-17]、猪圆环病毒[18-19]、人免疫缺陷性病毒[20]、乳头瘤病毒[21-23]等,病毒样颗粒疫苗的免疫效果与全病毒疫苗(灭活苗或弱毒苗)接近,但在交叉免疫方面仍然存在缺陷。因此,研究人员在病毒样颗粒疫苗研究的基础上进一步开始研究多价或多联病毒样颗粒疫苗,如嵌合型细小病毒样颗粒疫苗[24-25]、乳头瘤病毒多联病毒样颗粒疫苗[26-28]。

基于口蹄疫病毒样颗粒体外组装的研究及口蹄疫病毒GHloop独特的特点,笔者将FLAG标签蛋白插入衣壳蛋白GHloop环,通过大肠杆菌原核表达技术表达口蹄疫病毒衣壳蛋白并体外组装出嵌合FLAG外源多肽的口蹄疫病毒样颗粒。笔者首次体外组装嵌合型口蹄疫病毒样颗粒,以期为研究制备多联或多价口蹄疫病毒样颗粒疫苗奠定基础。

1 材料与方法

1.1 质粒、菌种、表达载体及抗体

含南非2型FMDV分离株VP1、VP0和VP3编码区的重组克隆质粒pUC57SAT2V1、pUC57SAT2V0及pUC57SAT2V3由家畜疾病病原生物学国家重点实验室保存。带有 SUMO 和 6×His 融合标签的 pSMK、pSMA表达载体、JM109大肠杆菌及BL21(DE3)RIL表达菌株,均购自生工生物工程(上海)有限公司。小鼠抗 His 单克隆抗体、辣根过氧化物酶(HRP)标记兔抗鼠IgG抗体、兔抗FLAG单克隆抗体、辣根过氧化物酶(HRP)标记山羊抗兔IgG抗体,均购自Sigma公司。

3 讨论

大肠杆菌缺乏外源蛋白翻译后修饰体系,因此通常情况下大肠杆菌表达的外源蛋白大多以包涵体的形式存在,包涵体纯化需要变性、复性对衣壳蛋白的空间结构损伤较大,不利于体外包装病毒样颗粒。笔者对衣壳蛋白进行小泛素化修饰增加了目的蛋白的水溶性,实现了大肠杆菌可溶性表达口蹄疫衣壳蛋白,不仅为体外组装病毒样颗粒提供充足的蛋白,还保证了衣壳蛋白的空间构象不被破坏。尤其小泛素化修饰蛋白酶特异性识别小泛素化修饰蛋白可以通过小泛素化修饰蛋白酶将小泛素化修饰蛋白与目的蛋白分离使目的蛋白以天然构象存在,避免了小泛素化修饰蛋白对衣壳蛋白组装的影响。

口蹄疫病毒结构蛋白VP1 GHloop环包含口蹄疫病毒主要抗原表位,能够诱导机体产生保护性中和抗体反应,其结构研究表明loop环突出于病毒衣壳表面且RGD基序周围是高度可变区,这为可变区内插入外源表位提供了理论依据。目前,通过细小病毒VP1独特区及乳头瘤病毒loop区插入外源表位成功制备出高免疫力嵌合型病毒样颗粒疫苗,这为制备嵌合型口蹄疫病毒样颗粒奠定了实践基础。亚洲1型口蹄疫病毒免疫表位插入O型口蹄疫病毒GHloop可变区既不影响O型口蹄疫病毒的复制,同时制备的重组病毒能够被特定的抗O型和亚洲1型特定表位的抗体识别,说明GHloop可变区免疫表位的插入没有破坏O型口蹄疫病毒loop可变区的免疫表位,且将亚洲1型口蹄疫病毒特定免疫表位呈递到病毒衣壳表面。目前研究表明二十面体病毒样颗粒在组装过程中跟真实病毒组装相似,组装过程中都会由衣壳蛋白组装成单体,再由单体通过共价键或疏水作用有序聚集形成组装前体或病毒样颗粒,因此推测GHloop环可变区插入外源多肽不会影响口蹄疫病毒衣壳蛋白的组装,能够形成嵌合型病毒样颗粒。该试验表明loop可变区150~151氨基酸位点FLAG标签蛋白的插入没有影响蛋白空间构象,并成功组装出嵌合型口蹄疫病毒样颗粒。这表明口蹄疫loop可变区引入外源抗原是可行的,但外源多肽的大小及理化性质会影响病毒样颗粒的组装效率。对于外源多肽的插入是否会影响或破坏口蹄疫病毒本身的抗原表位,有待进一步研究。

参考文献

[1] DOMINGO E,BARANOWSKI E,ESCARMIS C,et al.Footandmouth disease virus[J].Comp Immunol Microbiol Infect Dis,2002,25:297-308.

[2] MASON P W,GRUBMAN M J,BAXT B.Molecular basis of pathogenesis of FMDV[J].Virus Res,2003,91:9-32.

[3] PEREIRA H G.Subtyping of footandmouth disease virus[J].Dev Biol Stand,1976,35:167-174.

[4] ACHARYA R,FRY E,STUART D,et al.The threedimensional structure of footandmouth disease virus at 2.9 A resolution[J].Nature,1989,337:709-716.

[5] LOGAN D,ABUGHAZALEH R,BLAKEMORE W,et al.Structure of a major immunogenic site on footandmouth disease virus[J].Nature,1993,362:566-568.

[6] MATEU M G,MARTINEZ M A,ROCHA E,et al.Implications of a quasispecies genome structure:effect of frequent,naturally occurring amino acid substitutions on the antigenicity of footandmouth disease virus[J].Proc Natl Acad Sci USA,1989,86:5883-5887.

[7] PFAFF E,MUSSGAY M,BOHM H O,et al.Antibodies against a preselected peptide recognize and neutralize foot and mouth disease virus[J].EMBO J,1982,1:869-874.

[8] STROHMAIER K,FRANZE R,ADAM K H.Location and characterization of the antigenic portion of the FMDV immunizing protein[J].J Gen Virol,1982,59:295-306.

[9] BITTLE J L,HOUGHTEN R A,ALEXANDER H,et al.Protection against footandmouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence[J].Nature,1982,298:30-33.

[10] BURMAN A,CLARK S,ABRESCIA N G,et al.Specificity of the VP1 GH loop of FootandMouth Disease virus for alphav integrins[J].J Virol,2006,80:9798-9810.

[11] JACKSON T,ELLARD F M,GHAZALEH R A,et al.Efficient infection of cells in culture by type O footandmouth disease virus requires binding to cell surface heparan sulfate[J].J Virol,1996,70:5282-5287.

[12] MATEU M G,VALERO M L,ANDREU D,et al.Systematic replacement of amino acid residues within an ArgGlyAspcontaining loop of footandmouth disease virus and effect on cell recognition[J].J Biol Chem,1996,271:12814-12819.

[13] LAWRENCE P,PACHECO J M,UDDOWLA S,et al.Footandmouth disease virus(FMDV)with a stable FLAG epitope in the VP1 GH loop as a new tool for studying FMDV pathogenesis[J].Virology,2013,436:150-161.

[14] WANG H,XUE M,YANG D,et al.Insertion of type Oconserved neutralizing epitope into the footandmouth disease virus type Asia1 VP1 GH loop:effect on viral replication and neutralization phenotype[J].J Gen Virol,2012,93:1442-1448.

[15] GOODWIN S,TUTHILL T J,ARIAS A,et al.Footandmouth disease virus assembly:processing of recombinant capsid precursor by exogenous protease induces selfassembly of pentamers in vitro in a myristoylationdependent manner[J].J Virol,2009,83:11275-11282.

[16] GUO H C,SUN S Q,JIN Y,et al.Footandmouth disease viruslike particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs,swine and cattle[J].Vet Res,2013,44:48.

[17] LEE C D,YAN Y P,LIANG S M,et al.Production of FMDV viruslike particles by a SUMO fusion protein approach in Escherichia coli[J].J Biomed Sci,2009,16:69.

[18] WU P C,LIN W L,WU C M,et al.Characterization of porcine circovirus type 2 (PCV2)capsid particle assembly and its application to viruslike particle vaccine development[J].Appl Microbiol Biotechnol,2012,95:1501-1507.

[19] YIN S,SUN S,YANG S,et al.Selfassembly of viruslike particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli[J].Virol J,2010,7:166.

[20] CAMPBELL S,FISHER R J,TOWLER E M,et al.Modulation of HIVlike particle assembly in vitro by inositol phosphates[J].Proc Natl Acad Sci USA,2001,98:10875-10879.

[21] XIE M,LI S,SHEN W,et al.[Expression,purification and immunogenicity analysis of HPV type 18 viruslike particles from Escherichia coli[J].Chinese Journal of Biotechnology,2009,25:1082-1087.

[22] YAN C,LI S,WANG J,et al.[Expression,purification and immunogenicity of human papillomavirus type 11 viruslike particles from Escherichia coli[J].Acta microbiologica Sinica,2009,49:1527-1533.

[23] ZHANG W,CARMICHAEL J,FERGUSON J,et al.Expression of human papillomavirus type 16 L1 protein in Escherichia coli:denaturation,renaturation,and selfassembly of viruslike particles in vitro[J].Virology,1998,243:423-431.

[24] CASAL J I,RUEDA P,HURTADO A.Parvoviruslike particles as vaccine vectors[J].Methods,1999,19:174-186.

[25] RUEDA P,HURTADO A,DEL BARRIO M,et al.Minor displacements in the insertion site provoke major differences in the induction of antibody responses by chimeric parvoviruslike particles[J].Virology,1999,263:89-99.

[26] MULLER M,ZHOU J,REED T D,et al.Chimeric papillomaviruslike particles[J].Virology,1997,234:93-111.

[27] SLUPETZKY K,SHAFTIKERAMAT S,LENZ P,et al.Chimeric papillomaviruslike particles expressing a foreign epitope on capsid surface loops[J].J Gen Virol,2001,82:2799-2804.

[28] XU Y F,ZHANG Y Q,XU X M,et al.Papillomavirus viruslike particles as vehicles for the delivery of epitopes or genes[J].Arch Virol,2006,151:2133-2148.

猜你喜欢
原核表达
丹参蛋白激酶SmSnRK2.4的克隆及表达分析
H7亚型禽流感病毒HA基因的原核表达及表达产物的反应原性分析
结核分枝杆菌Erp蛋白PGLTS的4基序突变体的构建
棉花GhGGPase2基因克隆、功能序列分析、原核表达及烟草的遗传转化
人FOXA1蛋白的原核表达、纯化及蛋白互作分析
柑橘CitSERK—LIKE基因原核表达载体的构建与表达
信号分子与叶锈菌诱导下小麦病程相关蛋白1基因的表达分析
山桃醇腈酶基因PdHNL1的克隆、序列分析与原核表达
ShSAP1的原核表达及多克隆抗体的制备
水稻抗白叶枯病基因xa5的原核表达及蛋白纯化