张敏 张海艳 刘亭 乔梦萱
【摘要】人脸识别系统以是现在科学研究的热门之一,本文对人脸识别系统的流程及发展前景做了简单的回顾。对该系统的应用做了简单的分析并对人脸识别的主要方法进行了相应的分类。对人脸识别系统的未来主要发展进行展望。
【关键词】人脸识别;人脸检测;方法
Abstract:Face recognition system is one of the most popular current scientific research,In this paper,the process and prospects of face recognition system to do a simple review.The application of the system to do a simple analysis and the main method of face recognition for the corresponding category.For the future development of face recognition systems were mainly discussed.
Key words:Face Recognition;Face Detection;Methods
一、引言
随着科学技术的突飞猛进,计算机及网络的高速发展,信息的安全性、隐蔽性越来越重要,如何有效、方便的进行身份验证和识别,已经成为人们日益关心的问题。生物认证的方法,即利用人类自身的特征来进行身份认证,具有传统方法没有的有点,也解决了身份认证技术所面临的一大难题。其具有方便、强化安全、不会丢失、遗忘或转让等优点。现在人体生物识别技术的研究主要针对人脸、指纹、虹膜、手型、声音等物理或行为特征来进行。本文主要对人脸识别技术的介绍。
人脸识别是指给定一个静止或动态图像,利用已有的人脸数据库来确认图像中的一个或多个人。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具方便性,因为它取样方便,可以不接触目标就进行识别,从而開发研究的实际意义更大。另一方面,人脸表情的多样性;以及外在的成像过程中的光照,图像尺寸,旋转,姿势变化等给识别带来很大难度。因此在各种干扰条件下实现人脸图像的识别,也就更具有挑战性。
二、人脸识别系统流程
(1)人脸图像的获取:图像的获取都是通过摄像头摄取,但摄取的图像可以是真人,也可以是人脸的图片或者为了相对简单,可以不考虑通过摄像头来摄取头像,而是直接给定要识别的图像。
(2)人脸的检测:人脸检测的任务是判断静态图像中是否存在人脸。若存在人脸,给出其在图像中的坐标位置、人脸区域大小等信息。而人脸跟踪则需要进一步输出所检测到的人脸位置、大小等状态随时间的连续变化情况。
图1 人脸识别框架
(3)特征提取:通过人脸特征点的检测与标定可以确定人脸图像中显著特征点的位置(如眼睛、眉毛、鼻子、嘴巴等器官),同时还可以得到这些器官及其面部轮廓的形状信息的描述。根据人脸特征点检测与标定的结果,通过某些运算得到人脸特征的描述(这些特征包括:全局特征和局部特征,显式特征和统计特征等)。
(4)基于人脸图像比对的身份识别:即人脸识别问题。通过将输入人脸图像与人脸数据库中的所有已知原型人脸图像计算相似度并对其排序来给出输入人脸的身份信息。
(5)基于人脸图像比对的身份验证:即人脸确认问题。系统在输入人脸图像的同时输入一个用户宣称的该人脸的身份信息,系统要对该输入人脸图像的身份与宣称的身份是否相符作出判断。
三、人脸识别技术现状及发展前景
自1995年以来,国外一些公司看准了人脸识别系统广阔的应用前景,动用了大量人力和物力,自己独立研发或与高校合作,开发了多个实用的人脸识别系统,例如:加拿大Imagis公司的ID-2000面部识别软件,美国Identix公司1的FaceIt人脸识别系统,德国Human Scan公司的BioID身份识别系统,德国Cognitec Systems公司的Face VACS人脸识别系统等;美国A4vision公司的3D人脸识别产品;等等。
国内相关领域较为出名的公司有上海银晨智能识别科技有限公司(IS'vision),他们与中科院计算所联合开发了会议代表身份认证/识别系统、嫌疑人面像比对系统、面像识别考勤/门禁系统、出人口黑名单监控系统等多种自动人脸识别应用系统。2008年,北京奥运会开幕式正式使用了中国自主知识产权的人脸识别比对系统;2010年4月1日起,国际民航组织(ICAO)已确定其118个成员国家和地区必须使用机读护照,人脸识别技术是首推识别模式,该规定已经成为国际标准;2011年,Face book初次引入人脸识别技术,登陆人员可以免信息验证而激活页面;2012年3月6日,江苏省公安厅与南京理工大学日前签约共建“社会公共安全重点实验室”,开展“人脸识别”技术相关领域项目攻关。
到目前为止,虽然有关自动人脸识别的研究已经取得了一些可喜的成果,但在实际应用环境下仍面临着许多难以解决的问题:人脸的非刚体,表情、姿态、发型和化妆的多样性以及环境光照的复杂性都给正确的人脸识别带来了很大的困难。即使在大量来自模式识别、计算机视觉、生理学、心理学、神经认知科学等领域的研究人员对自动人脸识别艰苦工作40余年之后,其中不少问题至今仍然困绕着研究人员,始终找不到完善的解决办法。
在人脸识别市场,特别是在中国的市场,正经历着迅速的发展,而且发展的脚步也将越来越快。主要有三大原因:
1.是科技界和社会各个领域都认识到人脸识别技术的重要性,国家政策对人脸识别技术研究给予了很大支持,使得我国人脸识别技术取得了很大进展。国际上,美国国家标准技术局(NIST)举办的Face Recognition Vendor Test 2006(FRVT2006)通過大规模的人脸数据测试表明,当今世界上人脸识别方法的识别精度比2002年的FRVT2002至少提高了一个数量级(10倍)。其中一些方法的识别精度已经超过人类的平均水平。而对于高清晰、高质量人脸图像识别,机器的识别精度几乎达到100%。
2.各种应用需求不断出现。人脸识别市场的快速发展一方面归功于生物识别需求的多元化,另一方面则是由于人脸识别技术的进步。从需求上来说,除了传统的公司考勤、门禁等应用外,视频监控环境下的身份识别正成为一种迫切的需求,即在一个较复杂的场景中,在较远的距离上识别出特定人的身份,这显然是指纹识别的方法不能满足的,而人脸识别却是一个极佳的选择。
3.人口基数因素。人脸识别系统的市场大小,很大程度上是和人口的数量大小相关的。而我国有13亿人口,这从本质上说明了我国是世界上规模最大的生物识别市场。
四、常用的人脸识别方法
人脸识别技术和方法可分为两大类:基于几何特征的方法和基于模板匹配的方法。基于几何特征方法的思想是首先检测出嘴巴,鼻子,眼睛,眉毛等脸部主要部分的位置和大小,然后利用这些部件的总体几何分布关系以及相互之间的参数比例来识别人脸。基于模板的方法是利用模板和整个人脸图像的像素值之间的自相关性进行识别,这种方法也叫做基于表象的方法。
本文主要分析了常用的人脸识别方法为:几何特征的方法、模型的方法、神经网络的方法和多分类器集成方法。
1.几何特征的方法
最早的人脸识别方法就是Bledsoe提出的基于几何特征的方法,这种方法以面部特征点之间的距离和比率作为特征通过最近邻方法来识别人脸。该方法建立的人脸识别系统是一个半自动系统,其面部特征点必须由人手工定位,也正是由于人工的参与,该系统对光照变化和姿态变化不敏感。
Kanade首先计算眼角、鼻孔、嘴巴、下巴等面部特征之间的距离和它们之间的角度以及其它几何关系然后通过这些几何关系进行人脸的识别工作在一个20人的数据库上识别率为45%一75%。
Brunelli和Poggio通过计算鼻子的宽度和长度、嘴巴位置和下巴形状等进行识别,在一个47人的人脸库上的识别率为90%.然而,简单模板匹配方法在同一人脸库上的识别率为100%。
基于几何特征的方法比较直观,识别速度快,内存要求较少,提取的特征在一定程度上对光照变化不太敏感。但是,当人脸具有一定的表情或者姿态变化时,特征提取不精确,而且由于忽略了整个图像的很多细节信息且识别率较低,所以近年来已经很少有新的发展。
2.模型的方法
隐马尔可夫模型,是一种常用的模型,原HMM的方法首先被用于声音识别等身份识别上,之后被Nefian和Hayrs引人到人脸识别领域。它是用于描述信号统计特性的一组统计模型。
在人脸识别过程中,首先抽取人脸特征,得到后观察向量,构建HMM人脸模型,然后用EM算法训练利用该模型就可以算出每个待识别人脸观察向量的概率,从而完成识别,HMM方法的鲁棒性较好,对表情、姿态变化不太敏感,识别率高。
3.神经网络的方法
神经网络在人脸识别领域有很长的应用历史,1994年就出现了神经网络用于人脸处理的综述性文章。
动态链接结构(DLA)是用于人脸识别系统中最有影响的神经网络方法。DLA试图解决传统的神经网络中一些概念性问题,其中最突出的是网络中语法关系的表达。DLA利用突触的可塑性将神经元集合划分成若干个结构,同时保留了神经网络的优点。
自组织映射神经网络(SOM)与卷积神经网络相结合的混合神经网络方法进行人脸识别。SOM实现对图像的采样向量降维,且对图像样本的小幅度变形不敏感。卷积网络用来实现相邻像素间的相关性知识,在一定程度对图象的平移、旋转、尺度和局部变形也都不敏感。
神经网络方法较其他人脸识别方法有着特有的优势,通过对神经网络的训练可以获得其他方法难以实现的关于人脸图像的规则和特征的隐性表示,避免了复杂的特征抽取工作,并有利于硬件的实现。缺点主要在于其方法的可解释性较弱,且要求多张人脸图像作为训练集,所以只适合于小型人脸库。
4.多分类器集成方法
人脸的表象会因为光照方向、姿态、表情变化而产生较大的变化,每种特定的识别器只对其中一部分变化比较敏感,因此,将可以整合互补信息的多个分类器集成能够提高整个系统的分类准确率。
Gutta等人提出将集成的RBF与决策树结合起来进行人脸识别。结合了全局的模板匹配和离散特征的优点,在一个350人的人脸库上测试,取得了较好的实验结果。
五、总结及展望
随着图像处理、模式识别、人工智能以及生物心理学的研究进展,人脸识别技术也将会获得更大的发展。面对这种高新技术,人脸识别技术有着不可代替的优点。近几年对三维模型的人脸识别研究以成为一个热点。从二维模型到三维模型是一个阶跃性的发展,中间必须克服三维模型的开销大,所占空间大等因素。因此如何增强这类系统的保密性将是人脸识别系统要考虑的问题,它将是这种识别系统投入使用后人们最关心的问题,同时也是人脸识别领域需要研究的新课题。我们期待在不久的将来,人们将告别钥匙,迎来人脸开门的新时代。
参考文献
[1]李武军,王崇骏,张炜,等.人脸识别研究综述[J].模拟识别与人工智能,2006,19(1):58-65.
[2]李子青.人脸识别技术应用及市场分析[J].中国安防,2007,8:42-46.
[3]柴秀娟,山世光,卿来云,等.基于3D人脸重建的光照、姿态不变人脸识别[J] .软件学报,2006,17(3):525-534.
[4]李波.人脸识别技术及应用研究[D].西安电子科技大学,2007.
[5]闫娟,程武山,孙鑫.人脸识别的技术研究与发展概况[J].视频技术应用与工程,2006,296(12):81-84.