王亚东
【文献标识码】B 【文章编号】1004-7484(2014)02-0833-01
牙体严重缺损,仅剩很少的牙冠结构,桩核可给修复体提供垂直和水平的支持和固位。桩核套上全冠修复体,使患牙具有更大的防裂能力,同时增加冠外抗力,咬合力的保护,同时可防止根面龋。在桩核上,可根据患者的条件和需要,制作不同的全冠修复体。当全冠需要重新制作,只要将核心上的全冠拆下即可,避免了桩冠拆冠的困难。置桩核的牙做固定桥基牙,在桩核上制备固位牙的牙形,比桩核更容易取的共同的就位道。保留了以往需要拔的残根残冠,有利于保护牙弓形态,有利于恢复咬合关系,咀嚼功能。
目前应用最广泛的桩核分为两类:一类是桩和核整体铸造形成的铸造桩核体。另一类是预成桩与核结合而成的预成桩核。二者各有其应用范围,优缺点,也都在不断地发展。铸造桩核一般用于余留牙冠组织较少的情况;预成桩用于余留冠部牙体组织较多的情况,这时用其他材料制成的核可以粘结于牙本质。铸造桩核:我们使用含金量高的III金合金,与通常最广泛的镍铬合金相比,其生物相容性好,耐腐蚀,硬度低,弹性模量更接近于牙体组织。其次就是用镍铬合金铸造。当然,在使用铸造金属桩核时应该注意的一点是其铸造的合金最好与最终的冠修复体所使用的合金一致或相近,否则由于异种金属间的电势差产生的电流可能会加速全冠的腐蚀。
核修复材料有银汞合金,玻璃离子水门汀,和复合树脂。我们通常使用银汞合金,其优点是操作时间长,使用很不方便,因為其最大的压缩和牵张强度在18-24小时之后,初期的强度就很低。玻璃离子也有一些独特的优点:它和牙釉质和牙本质有微弱的粘结力;缓慢地释放氟;较低的热膨胀性。但其缺点是强度低,脆而易碎,对湿度敏感。复合树脂的优点是易于操作;与银汞相比有快速的凝固时间,这些特点使牙医能在置入预成桩后能立即完成核的修复,节省了临床操作时间。
桩核系统要求有最大的固位力和对剩余牙体组织最小的应力。与桩核系统使用相关的因素也就围绕增大固位和减小应力而展开,出现的问题包括粘结失败导致的桩核脱位,应力性的根折、桩折;当不同金属在桩核系统中应用时,腐蚀的风险等。在一件成功的修复体中,桩与根管的固位力是个关键问题。桩的固位的影响因素有桩的设计,桩的长度,桩的直径等等。桩的设计和强度是影响桩的应力分布和固位的重要因素。我们认为螺纹平行桩提供了抵抗从根管内脱位的最大的固位力,锥形桩固位最差。桩越长,固位力越大。但过度的根管预备增加了侧穿或破坏根尖封闭的危险。对桩的固位影响很小或没有影响的因素是桩的直径。此外,由于根部的解剖特点,预备平行桩也增加了侧穿的风险。
桩粘结的方法有:在桩表面涂粘结剂,用螺旋充填器、纸捻或探针将粘结剂导入根管。一般桩系统依靠水门汀粘结于残留牙根上。在桩、水门汀、牙本质的复合体中,有几个界面是薄弱的环节。首先,牙本质/水门汀界面是一个可能失败的界面;其次可能失败的是水门汀自身的失败;第三个可能失败的地方是在水门汀/金属界面。粘结的强度主要受二者材料间的接触的密切程度影响。金属表面的情况是影响这种接触的另一个因素。金属表面可以采取各种方法来提高粘结力,包括喷砂、硅涂层等。最后一个可能失败的区域是在牙本质内,这个失败是灾难性的,排除了进一步修复的可能性。粘结失败的机理:一般认为水门汀固有的薄弱和脆性可以导致粘结的失败。在咀嚼运动时,牙冠由于受到咀嚼食物时产生的交变应力发生微动而有脱位的趋势。支持牙冠的桩会将咀嚼力传递给牙本质和使桩稳固的水门汀。脆性的水门汀在这种持续循环的负荷之下会倾向崩解。在桩的冠部分周围的水门汀崩解后,桩的支点进一步向根方移动,杠杆臂加长,这会放大传递到静止的桩的剩余部分。结果是两种,一种是剩余水门汀变松,修复体脱落失败;另一种是应力集中于根尖处,久之导致了根折。由于在桩和周围空间不适合,这种失败在预成桩系统多见。根据我们临床使用螺旋充填器法是最好的粘结方法。
随着牙髓治疗技术的发展,经过完善根管治疗的残根残冠得以长期保留,对残根残冠的修复治疗就显得尤为重要起来。因此,在最终修复体制作之前一般要求制作桩核。桩核系统的目的是为未来的最终冠修复体提供固位并减低发生根折风险。