李桂英 田玉富 杨成君
摘要GRAS转录因子是植物特有的转录因子,参与植物的生长发育、信号转导、解毒作用、生物胁迫和非生物胁迫相关的应答过程。该文从GRAS转录因子的结构特征、在植物中的分布和功能作用方面对GRAS家族转录因子的研究现状进行综述,为GRAS家族转录因子的进一步开发利用提供依据。
关键词GRAS转录因子;生长发育;信号转导;生物胁迫;非生物胁迫
中图分类号S188文献标识码A文章编号0517-6611(2014)14-04207-04
Research Situation of GRAS Family Transcription Factor in Plants
LI Guiying, YANG Chengjun et al (College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040)
AbstractGRAS transcription factor is plant specific transcription factor, which participate in the growth and development of plants, detoxification, biotic and abiotic stressrelated response process. The article summarizes the research status of GRAS family transcription factors from the three aspects of structural features, distribution of plants and function of GRAS transcription factor, which will provide reference for further development and utilization of GRAS transcription factor.
Key words GRAS transcription factor; Growth and development; Signal transduction; Biotic stress; Abiotic stress
植物转录因子的研究是功能基因组学研究的一个重要内容。转录因子即反式作用因子,是一种DNA结合蛋白,典型的转录因子由DNA结合区、转录调控区(包括激活区或抑制区)、寡聚化位点和核定位信号区组成[1];转录因子通过这些功能区域与真核基因启动子区域中的顺式元件作用或与其他转录因子的功能区域相互作用来激活或抑制基因的表达[2]。近年来,从植物中分离出一系列调控基因表达的转录因子,如bZIP[3-6]、AP2/ERF[7-9]、WRKY[10-12]、MYB[13-16]、NAC[17-19]和GRAS[20-22]等转录因子。GRAS转录因子是一类植物特有的转录因子,GRAS的研究已被学者们关注。GRAS家族分为8个亚家族[23]:DELLA、HAM、LISCL、PAT1、LS、SCR、SHR和SCL3,广泛分布于植物中,在植物根茎的发育、分生组织的形成、赤霉素信号传导、光信号传导、生物及非生物胁迫过程中发挥着重要的作用。笔者就GRAS转录因子的结构特征、分布和功能等方面进行综述,以期更好地了解GRAS转录因子。
1GRAS家族转录因子的结构特征
GRAS家族的名称是由最先发现的GAI、RGA、SCR 3个成员的特征字母命名,由400~770个氨基酸组成,含有高度变异的N末端结构域和高度保守的C末端结构域,并且C末端具有同源序列,典型的C末端结构还应包括LHR I、VHIID、LHR II、PFYRE、SAW[20]。GRAS家族的标志性结构域是在VHIID基序的2边含有2个100个氨基酸残基组成的亮氨酸丰富的区域。VHIID基序存在于GRAS家族的所有成员中,虽然有证据表明该基序中的组氨酸和天冬氨酸可以被缬氨酸和异亮氨酸代替,但在自然界中它们是完全保守的。VHIID基序代表几个重要的氨基酸,V代表缬氨酸,I代表异亮氨酸,H代表组氨酸,D代表天冬氨酸。在第1个富含亮氨酸区域的前端含有LXXLL序列,PFYRE和RVER基序位于第2个富含亮氨酸的区域[24]。GRAS家族结构图解如下所示:
图1 GRAS家族结构图解[25]2GRAS在一些植物中的分布情况
2.1模式植物 目前,至少从拟南芥中分离出33个GRAS转录因子,主要有SCL[20]、SCR[26]、SHR[27]、GAI[28]、RGA[29]、RGL[30]和PAT1[31]等。水稻中发现了60个GRAS家族成员,如MOC1[22]、SLR1[32]和CIGR1/2[33]等。此外,在烟草中分离发现了一个核定位的GRAS基因家族新成员NtGRAS1,并指出NtGRAS1基因可能作为一个重要的转录调节因子参与植物胁迫反应[21]。
2.2非模式植物 有报道指出,葡萄含有GRAS基因,并且和拟南芥GRAS家族基因间具有较高的保守性[34]。运用同源基因克隆技术从赖草中克隆了LRC1基因,该基因与控制水稻分蘖的MOC1基因具有很高的同源性(达91%)[35]。此外,在番茄[36]、玉米[37]、矮牵牛[38]、大麦[39]、百脉根[40]、松树[41]、佛肚竹[42]、黄瓜[43]、海马齿[44]、苜蓿[45]、胡杨[46]和白桦[47]等多种植物中也发现有GRAS家族转录因子的存在。
3GRAS的功能研究
3.1 生長发育
3.1.1 分生组织的发育。分生组织是产生和分化其他各种组织的基础,其活动可以使植物体终生增长。LS基因是GRAS家族基因,Schumacher K利用番茄LS功能缺失突变体对番茄的分生组织发育情况进行研究,结果表明番茄中的LS基因能够参与叶腋分生组织的发育,形成侧芽[36]。水稻OsMOC1基因与番茄LS基因是同源基因,参与侧生分生组织的启动、分蘖芽的形成和长出,是控制水稻分蘖的关键因子[22]。植物茎的发育依靠茎尖分生组织SAM在生长轴顶点的保持,矮牵牛HAM编码GRAS蛋白,调节侧生器官原基和茎维管组织的发育,对茎尖分生组织的维持是必需的和特定的[38]。此外,拟南芥AtLAS/SCL18基因敲除家系的侧芽失去萌发能力,说明AtLAS/SCL18参与调控腋下分生组织的发育[48]。
3.1.2 根、茎的生长发育。SCR[26]和SHR[27]对植物根和茎的辐射状生长起重要作用。在同一种途径中,SHR在SCR上游起作用,SHR可以在特定组织中直接诱导SCR启动子活性,它们都是辐射形态形成的正调控因子[49]。Llave C发现拟南芥中某些GRAS家族基因(如SCL6Ⅱ、SCL6Ⅲ和SCL6Ⅳ)的表达受microRNA171的调控,以此来来控制根系的发育[50]。BnSCL1是转录激活因子,能与HDA19相互作用,且在根发育过程中与生长素相联合起作用[51]。PrSCL1和CsSCL1在不定根形成的早期阶段起作用,并且能对外源生长素做出反应[52]。NSP1[53]和NSP2[54]在豆科植物结瘤发育和功能中是必需的,分别属于SHR和HAM亚家族,并且这2个蛋白在结瘤形态发生中展现了类似的但非冗余的功能。最新研究表明,豆科模式植物蒺藜苜蓿中含有GRAS基因MtSymSCL1,该基因在豆科植物与根瘤菌共生过程中起着调节根瘤数量的作用[45]。
3.2信号转导
3.2.1 光敏色素信号转导。光敏色素是植物体自身合成的一种调节生长发育的色蛋白。参与光敏色素信号传导的GRAS转录因子有PAT1、SCL13和SCL21。PAT1和SCL21是光敏色素A信号传导的正调节子,它们参与同一信号途径。PAT1在光敏色素A信号串联的早期阶段起作用[31],光通过phyA和PAT1调节SCL21的表达[55]。而在持续的红光信号下,AtSCL13作为一个正调节子在光敏色素B的下游起作用,主要作用是在脱黄化过程中使下胚轴伸长[56]。
3.2.2 赤霉素(GA)信号转导。赤霉素一般促进茎的伸长、花的发育以及种子的萌发,而研究表明GRAS家族中的GAI、RGA、RGL基因在赤霉素信号传导中起负调控作用,其中GAI和RGA在茎伸长和展叶过程中起负调控作用,降低赤霉素对植物茎的伸长作用,其突变导致植物对赤霉素不敏感而呈现矮化等;RGL1或RGL2 基因在种子萌发过程中起负调控作用[29,57-60]。CIGR1和CIGR2在水稻悬浮培养细胞中通过一种剂量依赖的方法对外源生物活性的GA有响应,并且是GA信号传导的优良标记[33]。
拟南芥[28]、水稻[32]、大麦[39]、玉米[61]和小麦[62]的DELLA基因功能获得或缺失突变体分别表现为对GA不敏感的矮化表型或基本的响应表型,这些突变体的表型暗示出DELLA蛋白是GA信号转导的负调节子。若在正常的水稻中过量表达缺少DELLA结构域的SLRL1基因,将会诱导植株矮化、阻碍芽的伸长[63]。
3.2.3 油菜素类固醇信号转导。油菜素类固醇(BR)是植物体内一类重要的类固醇激素,调控着植物的生长和发育,细胞内BR生物合成或信号转导缺陷往往导致细胞增殖异常,从而引起典型的矮化表型。水稻dlt突变体的嫩枝和初生根短于野生型幼苗,表现为BR不敏感的矮化表型,叶子变为深绿色,且分蘖降低,由此证明GRAS家族新成员DLT在水稻的BR信号反应中起着积极的作用[64]。
3.3解毒作用 拟南芥中SCL14是一种TGA(II类转录因子)互作蛋白,对压力诱导型启动子的激活是必要的,在含有TGA的启动子受到SA (水杨酸)和2,4D(生长素类似物)诱导后,SCL14可以调控其靶基因参与生物异源化学物质和内源的有害代谢产物的解毒,增强了植物对有毒物质的耐受性,由此得知,SCL14具有广谱解毒的作用[65]。
3.4生物胁迫 水稻的CIGR1和CIGR2基因可被悬浮培养的水稻中的N乙酰基壳寡糖激发子和共培养的稻瘟病菌快速诱导,CIGR1和CIGR2基因作为转录调节的防御信号在感应真菌和发病机制的早期阶段发挥关键作用[66]。番茄和丁香假单胞菌相互作用时,番茄的6个SIGRAS基因(SIGRAS1、SIGRAS2、SIGRAS3、SIGRAS4、SIGRAS6和SIGRAS13)转录子出现积累;用绿色木霉菌的EIX诱导子处理番茄时,SIGRAS4和SIGRAS6基因表达量增加,这些结果表明SIGRAS基因或许参与由细菌和诱导子触发的防御反应,参与调控生物胁迫[67]。
3.5非生物生物胁迫
3.5.1 低温胁迫。低温能够提高赤霉素合成途径中的GA2ox3和GA2ox6基因表达,进而降低体内活性GA的含量,稳定DELLA蛋白,提高植物的抗冷能力,即DELLA蛋白有助于CBF1诱导的冷耐受性[68]。佛手GRAS基因能够对低温胁迫做出积极的响应,可以调节佛手对逆境的适应情况,该结果为选育耐低温的佛手新品种提供了理论依据[69]。
3.5.2 干旱胁迫。拟南芥中过表达甘蓝型油菜的BnLAS基因,能够抑制生长,推迟叶片衰老和花期,提高叶绿素含量并且增强植物抗旱能力[70]。郭华军等利用生物信息学手段研究表明SCL5、SCL7、SCL13、SCL14和SCL26等基因的诱导随渗透胁迫时间的延长呈明显上升趋势;SCL11、SCL13和SCL15基因受干旱诱导处理后的信号强度明显上升[71]。并且,拟南芥SCL15基因在干旱胁迫中的作用通过SCL15突变体的表型得到了驗证,野生型和突变体植株的表型差异表明SCL15突变体植株对水分的需求减少,提高了植株的抗旱能力[72]。
3.5.3 盐胁迫。高盐胁迫能够激活脱落酸(ABA)信号,从而促进DELLA蛋白的积累,抑制植物生长,增强抗性[73]。盐穗木HcSCL13基因随盐(600 mmol/L NaCl)胁迫时间的延长表达量逐渐升高,与对照组有显著性差异,说明该基因对盐胁迫能够做出积极地响应[74]。马洪双首次研究了木本植物胡杨GRAS/SCL家族基因在抗逆方面的作用,结果表明在正常浇水生长条件下,胡杨PeSCL7基因没有任何的变化, 但是,在脱水、高盐、低温等逆境条件下PeSCL7表达量均升高,说明PeSCL7基因能够响应逆境胁迫[46]。
3.5.4 低磷、高NO胁迫。磷在土壤里移动性差,所以在低磷条件下,植物通过降低GA水平来控制DELLA蛋白的积累,进而能够增加主根的长度、促进侧根大量发生、促进根毛的伸长,以此扩大根系对磷吸收的表面积,使植物适应低磷土壤,提高植物对低磷的耐受能力[75]。低浓度的NO对植物的生长起促进作用,但在高浓度下其会抑制植物生长甚至会杀死植物。姚涛等研究表明,NO在转录水平上影响DELLA基因,高浓度NO能够增加DELLA蛋白的含量,进而使植物能够免受高浓度NO导致的细胞死亡[76]。
3.6其他方面 LlSCL在百合花药细胞减数分裂前期表达,与减数分裂有关的启动子起转录激活作用,在转录水平上参与调节百合花药的小孢子形成[77]。DELLA蛋白有助于植物光形态建成,调控植物的生长[78]。詹杰鹏研究分析了海岛棉GbGAI2基因在花后胚珠发育各个阶段的表达情况,结果表明,GbGAI2基因在海岛棉棉纤维发育的起始阶段和棉纤维次生壁加厚阶段起作用[79]。
42卷14期李桂英等植物GRAS家族转录因子的研究现状4展望
目前,从高等植物中已分离鉴定的GRAS转录因子有数十种,对其分子结构及功能的研究日趋完善,这将有助于人们认识GRAS与其他转录因子之间及它们与DNA之间相互作用的机制,阐明GRAS蛋白的结构与基因表达模式,揭示GRAS转录因子在基因表达与调控中所起作用,有助于研究不同植物物种中新的GRAS基因功能。
参考文献
[1] 刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1470-1472.
[2] SCHWECHHEIMER C,BEVAN M.The regulation of transcription factor activity in plants[J].Plant Science,1998,3(10):378-383.
[3] OEDA K,SALINAS J,CHUA N H.A tobacco bZip transcription activator (TAF1) binds to a Gboxlike motif conserved in plant genes[J].The EMBO Journal,1991,10(7):1793-1802.
[4] NAKAGAWA H,OHMIYA K,HATTORO T.A rice bZIP protein,designated OSBZ8,is rapidly induced by abscisic acid[J].The Plant Joural,1996,9(2):217-227.
[5] FINKELSTEIN R R,LYNCH T J.The Arabidopsis Abscisic Acid Response Gene ABI5 Encodes a Basic Leucine Zipper Transcription Factor[J].The Plant Cell,2000,12:599-609.
[6] 王磊,赵军,范云六.玉米Cat1基因顺式元件ABRE2结合蛋白ABP9的基因克隆及功能分析[J].科学通报,2002,47(15):1167-1171.
[7] NAKANO T,SUZUKI K,FUJIMURA T,et al.GenomeWide Analysis of the ERF Gene Family in Arabidopsis and Rice[J].Plant Physiology,2006,140:411-432.
[8] MIDDLETON P H,JAKAB J,PENMETSA R V,et al.An ERF transcription factor in Medicago truncatula that is essential for Nod Factor Signal Transduction[J].The Plant Cell,2007,19:1221-1234.
[9] 庄静,周熙荣,孙超才,等.甘蓝型油菜中一类AP2/ERF转录因子的克隆和生物信息学分析[J].中国生物工程杂志,2008,28(5):29-40.
[10] DU L Q,CHEN Z X.Identication of genes encoding receptorlike protein kinases as possible targets of pathogenand salicylic acidinduced WRKY DNAbinding proteins in Arabidopsis[J].The Plant Journal,2000,24(6):837-847.
[11] 江腾,林勇祥,刘雪,等.苜蓿全基因组WRKY转录因子基因的分析[J].草业学报,2011,20(3):211-218.
[12] 許瑞瑞,张世忠,曹慧,等.苹果WRKY转录因子家族基因生物信息学分析[J].园艺学报,2012,39(10):2049-2060.
[13] LI S F,PARISH R W.Isolation of two novel myblike genes from Arabidopsis and studies on the DNAbinding properties of their products[J].The Plant Joural,1995,8(6):963-972.
[14] 陈俊,朱英,王宗阳.水稻MYB cDNA的克隆和表达分析[J].植物生理与分子生物学学报,2002,28(4):267-274.
[15] KWON Y,KIM J H,NGUYEN H N,et al.A novel Arabidopsis MYB-like transcription factor,MYBH,regulates hypocotyl elongation by enhancing auxin accumulation[J].Journal of Experimental Botany,2013,64(12):3911-3922.
[16] SU L T,LI J W,LI D Q,et al.A novel MYB transcription factor,GmMYBJ1,from soybean confers drought and cold tolerance in Arabidopsis thaliana[J].Gene,2014,538:46-55.
[17] SOUER E,HOUWELINGEN A V,KLOOS D,et al.The No Apical Meristem Gene of Petunia Is Required for Pattern Formation in Embryos and Flowers and Is Expressed at Meristem and Primordia Boundaries[J].Cell,1996,85:159-170.
[18] FANG Y J,YOU J,XIE K B,et al.Systematic sequence analysis and identification of tissuespecific or stressresponsive genes of NAC transcription factor family in rice[J].Mol Genet Genomics,2008,280:547-563.
[19] RUSHTON P J,BOKOWIEC M T,HAN S C,et al.Tobacco Transcription Factors:Novel Insights into Transcriptional Regulation in the Solanaceae[J].Plant Physiology,2008,147:280-295.
[20] PYSH L D,WYSOCKADILLER J W,CAMILLERI C,et al.The GRAS gene family in Arabidopsis:sequence characterization and basic expression analysis of the SCARECROWLIKE genes[J].The Plant Journal,1999,18(1):111-119.
[21] CZIKKEL B E,MAXWELL D P.NtGRAS1,a novel stressinduced member of the GRAS family in tobacco,localizes to the nucleus[J].Journal of Plant Physiology,2007,164(9):1220-1230.
[22] LI X Y,QI SN Q,FU Z M,et al.Control of tillering in rice[J].Nature,2003,422:618-621.
[23] TIAN C G,WAN P,SUN S H,et al.Genomewide analysis of the GRAS gene family in rice and Arabidopsis[J].Plant Molecular Biology,2004,54(4):519-532.
[24] 侯夢筠.水稻 GRAS 转录因子家族基因克隆、遗传转化与功能分析[D].长春:吉林大学,2013.
[25] BOLLE C.The role of GRAS proteins in plant signal transduction and development[J].Planta,2004,218:683-692.
[26] LAURENZIO L D,DILLER J W,MALAMY J E,et al.The SCARECROW gene regulates an asymmetric cell division that isessential for generating the radial organization of the Arabidopsis root[J].Cell,1996,86:423-433.
[27] HELARIUTTA Y,FUKAKI H,DILLER J W,et al.The SHORTROOT gene controls radial patterning of the Arabidopsis root through radial signaling[J].Cell,2000,101:555-567.
[28] RONG P J,CAROL P,RICHARDS D E,et al.The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J].Genes Dev,1997,11:3194-3205.
[29] SILVERSTONE A L,CIAMPAGLIO C N,SUN T P.The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway[J].The Plant Cell,1998,10:155-169.
[30] FERNANDEZ R S,DIAZ W A,MONTAGU M V,et al.Cloning of a novelArabidopsis thaliana RGAlike gene,a putative member of the VHIIDdomain transcription factor family[J].Journal of Experimental Botany,1998,49(326):1609-1610.
[31] BOLLE C,KONCZ C,CHUA N H.PAT1,a new member of the GRAS family,is involved in phytochrome A signal transduction[J].Genes Dev,2000,14:1269-1278.
[32] IKEDA A,TANAKA M U,SONODA Y,et al.Slender Rice,a Constitutive Gibberellin Response Mutant,Is Caused by a Null Mutation of the SLR1Gene,an Ortholog of the Height Regulating Gene GAI/ RGA/RHT/D8[J].The Plant Cell,2001,13:999-1010.
[33] DAY R B,TANABE S,KOSHIOKA M,et al.Two rice GRAS family genes responsive to Nacetylchitooligosaccharide elicitor are induced by phytoactive gibberellins:evidence for crosstalk between elicitor and gibberellin signaling in rice cells[J].Plant Molecular Biology,2004,54:261-272.
[34] 孫欣,王晨,房经贵,等.葡萄GRAS基因家族生物信息学分析[J].江西农业学报,2011,23(7):1-8.
[35] 何文兴,李洪梅,叶春江,等.赖草根茎分蘖相关基因LRC1的克隆及表达[J].中国草地学报,2011,33(5):7-13.
[36] SCHUMACHER K,SCHMITT T,ROSSBERG M,et al.The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family[J].Plant Biology,1999,96:290-295.
[37] LIM J,HELARIUTTA Y,SPECHT C D,et al.Molecular Analysis of the SCARECROW Gene in Maize Reveals a Common Basis for Radial Patterning in Diverse Meristems[J].The Plant Cell,2000,12:1307-1318.
[38] STUURMAN J,JAGGI F,KUHLEMEIER C.Shoot meristem maintenance is controlled by a GRASgene mediated signal from differentiating cells[J].Genes Dev,2002,16:2213-2218.
[39] CHANDLER P M,POLL A M,ELLIS M,et al.Mutants at the Slender1 locus of Barley cv Himalaya.Molecular and physiological characterization[J].Plant Physiology,2002,129:181-190.
[40] HECKMANN A B,LOMBARDO F,MIWA H,et al.Lotus japonicus nodulation requires two GRASdomain regulators,one of which is functionally conserved in a nonlegume[J].Plant Physiology,2006,142:1739-1750.
[41] SOLE A,SANCHEZ C,VIELBA J M,et al.Characterization and expression of a Pinus radiate putative ortholog to the Arabidopsis SHORTROOT gene[J].Tree Physiolog,2008,28:1629-1639.
[42] ZHOU M B,ZHANG Y,TANG D Q.Characterization and Primary Functional Analysis of BvCIGR,a Member of the GRAS Gene Family in Bambusa ventricosa[J].Bot Rev,2011,77:233-241.
[43] WISNIEWSKA A,BOGIEL A P,ZUAGA S,et al.Molecular characterization of SCARECROW (CsSCR) gene expressed during somatic embryo development and in root of cucumber (Cucumis sativus L.)[J].Acta Physiol Plant,2013,35:1483-1495.
[44] 劉习文,畅文军,朱家红,等.海马齿SpSCL1基因启动子克隆及序列分析[J].广东农业科学,2013(4):124-127.
[45] KIM G B,NAM Y W.A novel GRAS protein gene MtSymSCL1 plays a role in regulating nodule number in Medicago truncatula[J].Plant Growth Regul,2013,71:77-92.
[46] 马洪双,夏新莉,尹伟伦.胡杨SCL7基因及其启动子片段的克隆与分析[J].北京林业大学学报,2011,33(1):1-10.
[47] 杨成君,崔璨,谢龙飞,等.吉尔吉斯白桦BkGRAS1基因克隆与序列分析[J/OL].http://www.doc88.com/p8039033122992.html.
[48] GREB T,CLARENZ O,SCHAFER E,et al.Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation[J].Genes & Development,2003,17:1175-1187.
[49] 高潜,刘玉瑛,费一楠,等.拟南芥根的辐射形态相关基因SHORTROOT研究进展[J].植物学通报,2008,25(3):363-372.
[50] LLAVE C,XIE Z X,KASSCHAU K D,et al.Cleavage of scarecrowlike mRNA targets directed by a class of Arabidopsis miRNA[J].Science,2002,297:2053-2056.
[51] GAO M J,PARKIN I A P,LYDIATE D J,et al.An auxinresponsive SCARECROW-like transcriptional activator interacts with histone deacetylase[J].Plant Molecular Biology,2004,55:417-431.
[52] SANCHEZ C,VIELBA J M,FERRO E,et al.Two SCARECROWLIKE genes are induced in response to exogenous auxin in rootingcompetent cuttings of distantly related forest species[J].Tree Physiology,2007,27:1459-1470.
[53] SMIT P,RAEDTS J,PORTYANKO V,et al.NSP1 of the GRAS protein family is essential for rhizobial Nod factorinduced transcription[J].Science,2005,308:1789-1791.
[54] KALO P,GLEASON C,EDWARDS A,et al.Nodulation signaling in legumes requires NSP2,a member of the GRAS family of transcriptional regulators[J].Science,2005,308:1786-1789.
[55] GALEA P T,HIRTREITER B,BOLLE C.Two GRAS Proteins,SCARECROWLIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1,Function Cooperatively in Phytochrome A Signal Transduction[J].Plant Physiology,2013,161:291-304.
[56] GALEA P T,HUANG L F,CHUA N H,et al.The GRAS protein SCL13 is a positive regulator of phytochromedependent red light signaling,but can also modulate phytochrome A responses[J].Mol Gene Genomics,2006,276:13-30.
[57] PENG J R,HARBERD N P.Gibberellin deficiency and response mutations suppress the stem elongation phenotype of Phytochromedeficient mutants of Arabidopsis[J].Plant Physiol,1997,113:1051-1058.
[58] LEE S,CHENG H,KING K E,et al.Gibberellin regulates Arabidopsis seed germination via RGL2,a GAI/RGAlike gene whose expression is upregulated following imbibition[J].Genes Dev,2002,16:646-658.
[59] WEN C K,CHANG C.Arabidopsis RGL1 encodes a negative regulator of gibberellin responses[J].The Plant Cell,2002,14:87-100.
[60] SILVERSTONE A L,ANNIE MAK P Y,MARTINEZ E C,et al.The New RGA Locus Encodes a Negative Regulator of Gibberellin Response in Arabidopsis thaliana[J].Genetics,1997,146:1087-1099.
[61] WINKLER R G,FREELING M.Physiological genetics of the dominant gibberellins nonresponsive maize dwarfs,Dwarf8 and Dwarf9[J].Planta,1994,193:341-348.
[62] PENG J R,RICHARDS D E,HARTLEY N M,et al.Green revolution gene encode mutant gibberellin response modulators[J].Nature,1999,400:256-261.
[63] ITOH H,SHIMADA A,TANAKA M U,et al.Overexpression of a GRAS protein lacking the DELLA domain confers altered gibberellin responses in rice[J].The Plant Journal,2005,44:669-679.
[64] TONG H N,JIN Y,LIU W B,et al.DWARF AND LOWTILLERING,a new member of the GRAS family,plays positive roles in brassinosteroid signaling in rice[J].The Plant Journal,2009,58:803-816.
[65] FODE B,SIEMSEN T,THUROW C,et al.The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress inducible promoters[J].The Plant Cell,2008,20:3122-3135.
[66] DAY R B,SHIBUYA N,MINAMI E.Identification and characterization of two new members of the GRAS gene family in rice responsive to Nacetylchitooligosaccharide elicitor[J].Biochim.Biophys Acta,2003,1625:261-268.
[67] MAYROSE M,EKENGREN S K,BONFIL S M,et al.A novel link between tomato GRAS genes,plant disease resistance and mechanical stress response[J].Molecular Plant Pathology,2006,7(6):593-604.
[68] ACHARD P,GONG F,CHEMINANT S,et al.The coldinducible CBF1 factordependent signaling pathway modulates the accumulation of the growthrepressing DELLA proteins via its effect on gibberellin metabolism[J].Plant Cell,2008,20:2117-2129.
[69] 石瑞,曹詣斌,陈文荣,等.佛手GRAS基因的克隆及表达分析[J].浙江师范大学学报,2011,34(4):446-451.
[70] YANG M G,YANG Q Y,FU T D,et al.Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance[J].Plant Cell Rep,2011,30:373-388.
[71] 郭华军,焦远年,邸超,等.拟南芥转录因子GRAS家族基因群响应渗透和干旱胁迫的初步探索[J].植物学报,2009,44(3):290-299.
[72] 郭华军.拟南芥转录因子GRAS家族SCL15基因对干旱胁迫的响应分析[D].杨凌:西北农林科技大学,2009.
[73] ACHARD P,CHENG H,GRAUWE L D,et al.Integration of plant responses to environmentally activated phytohormonal signals[J].Science,2006,311:91-94.
[74] 周莲洁,杨中敏,张富春,等.新疆盐穗木GRAS转录因子基因克隆及表达分析[J].西北植物学报,2013,33(6):1091-1097.
[75] JIANG C F,GAO X H,LIAO L L,et al.Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellinDELLA signaling pathway in Arabidopsis[J].Plant Physiology,2007,145:1460-1470.
[76] 姚涛,白素兰,李苗苗,等.DELLA蛋白参与拟南芥幼苗对一氧化氮逆境的抵抗[J].植物学报,2011,46(5):481-488.
[77] MOROHASHI K,MINAMI M,TAKASE H,et al.Isolation and characterization of a novel GRAS gene that regulates meiosisassociated gene expression[J].Journal of Biological Chemistry,2003,278:20865-20873.
[78] ACHARD P,LIAO L L,JIANG C F,et al.DELLAs Contribute to Plant Photomorphogenesis[J].Plant Physiology,2007,143:1163-1172.
[79] 詹杰鹏,崔百明,彭明,等.海岛棉DELLA蛋白基因GbGAI2的克隆及其在胚珠中表达分析[J].石河子大学学报,2012,30(5):529-534.