于 强
(辽东学院 师范学院 数学系,辽宁 丹东 118003)
数学建模,专家给它下的定义是:通过对实际问题的抽象简化,确定变量和参数,并应用某些“规律”建立起变量参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释验证所得到的解,从而确定能否用于解决问题的多次循环、不断深化的过程。简单地说,数学建模就是通过建立一个恰当的数学模型来解决实际问题的全过程。
在当今数学教学中,理论联系实际、学以致用能力的培养一直都是薄弱环节。
数学建模教学弥补了传统数学教学中的理论学习和实际应用、检验相脱离的缺憾,对于提高学生的实践能力极为重要,这已为当前世界各国数学界、科技界充分认同。
数学建模要求面对一些理论上或应用中的实际问题。这些问题,没有现成的答案,没有固定的求解方法,没有指定的参考书,没有规定的教学工具和手段,也没有成型的数学问题。这就要求学生独立思考,亲口尝一尝梨子的滋味,亲身体验数学的创造和发现过程,取得课堂上书本中无法得到的宝贵经验。
传统的数学教学过程,使很多人产生了误解。我们从一些基本的概念或定义出发,以简练的方式合乎逻辑地推演出所要求的结论,固然可以使学生在较短的时间内按部就班地学到尽可能多的内容,体会到一种丝丝人扣、天衣无缝的美感。但是,过分强调这一点,就可能使学生误以为数学本身就是这样的完美无缺、无懈可击,似乎是与生俱来、天经地义的,从而使思想处于一种僵化状况,在生动活泼的现实世界面前变得束手无策、一筹莫展。而数学公式,重要的是培养同学具备正确的思想方法,而且能依据自己所学到的知识,能够不断创新,不断地找出新的途径。这不是在课堂里死啃几个定理就能够解决的。所谓的培养创新精神、加强素质教育就成了一句空话。而数学建模培训和竞赛,正是一帖解决问题的良药。
要搞好数学建模的教学活动,促进教学质量改革的顺利进行,其关键就在于建设一支有较高业务水平、教学经验丰富和勇于奉献的数学建模指导教师队伍。要想有一支优秀的指导教师队伍,就必须加强指导教师队伍的素质建设,尤其是青年教师的教育理念,教学水平,科研能力及应用能力和水平的提高,以适应培养新世纪复合型人才的教学需要。
数学建模教学内容实时关注当今社会热点问题,希望同学们通过适当的简化假设、根据问题的复杂程度﹑定性问题与定量问题相结合地建立数学模型。将实际问题数学化,即用数学语言来表示,这就是数学化的一个综合﹑归纳能力。因而对教师有更高的要求,需要概率统计、数据分析、矩阵分析、数值分析、线性规划、非线性规划、微分方程、计算机编程等学科的学术研究和前沿探究。
数学建模课程与其他数学基础课有些不同,如数学分析课程是经过千百年的千锤百炼,其教学内容和体系非常成熟和稳定,其一般逻辑顺序是按定义、公理、引理、定理、推论的体系来安排教学内容的,学生的主要任务是学习,接受知识。数学建模课程是一门新开设的课程,它不是教给学生多少知识点,而是要学生学会怎样将实际问题变成数学问题来加以解决,没有一定之规可循,答案不是唯一的,教学模式一般是研讨式、开放式的,这反而有利于学生的创新。
现代心理学研究表明,学习者在学习中保持愉快和宽松的心境,有利于发挥主动性和创新意识,释放出巨大的学习潜能。所以,我们在设计数学建模课程的教学模式时,一般不是先讲多少知识和讲例题的,而是开门见山引出实际问题,营造一种民主和谐、平等宽松的教学气氛。在这样一种氛围中,学生没有压抑感,个性及思维能力得以充分发挥。人本主义代表人物罗杰斯说:“根据我的经验,我发现,如果我能帮助产生一种以真实、尊重和理解为特征的气氛,那么激动人心的事情就发生了。在这样一种气氛中的个人和小组,离开僵化走向灵活性,离开依赖走向自主,离开戒备走向自我接受,离开被预定走向一种不能预料的创造性。”创设民主、平等、宽松的教学氛围关键在于教师,取决于教师做些什么以及他怎样做。教师应该做到以下三点:第一,要尊重每个学生,相信每个学生都能成功。得到老师的信任,学生敢想、敢问、敢说,很少循规蹈矩,从而能充分及时地发现对他有意义的东西,且努力以一些新的、自发的方式自我发现。第二,提供一个没有外部评价的环境。评价总是一种威胁,会使人产生一种戒防,从而拒绝自己的经验去迎合他人的要求,这对创造性的发展相当不利。第三,理解学生。如果教师能够理解学生,允许学生说错、做错,允许学生随时改变自己的说法和做法,学生保持“心理的自由”。在这种气氛中学生能以真正的自我出现,能由衷地表达各种各样别出心裁的看法,这样,学生的创新意识就会更强烈,创新思路更宽广。
首先,发现问题是创新的起点和开端,也是解决问题的前提。教学中,让学生产生疑问,提出问题,就是希望激发学生探索知识的兴趣和热情,产生自主探索的原动力。爱因斯坦就曾站在学术研究立场上说过:“提出问题和系统阐述问题比解决问题更为重要,因为,解决问题也许是一个数学上或实验上的技能而已,而提出新的问题、新的可能性、从新的角度去看旧的问题,却需要创造性的想象力,而且标志着科学的真正进步。”其次,从人的心理活动来看,学生在寻找问题的过程中,他的洞察力、想象力等都被充分调动和诱发。提问题的过程,学生将经历思维的发散、变通和独特性的训练,对学生来说,这是重要的思维训练过程。同时因为意识到有问题,学生就会产生一种排难解疑、寻根究底的强烈的探求心理,在这种心理的驱动下,他会不断突破思维定势,转换思维角度,灵活地考虑问题,直到有新的发现和创新。因此,问题既是创新思维的结果,又是创新思维的动力。一般来说,数学建模的问题都来自学生的日常生活、现实世界、其他学科等多方面,是充满现实情景的、多样的。现实问题的情景具有强烈的吸引力,容易刺激学生的求知欲、探索欲,使学生主动对其产生兴趣,引发学生的创造性思维。
“数学建模竞赛”要求在三天时间内解决一个有相当难度的实际问题,建立数学模型,给出运算结果,写出建模论文。由于绝大多数竞赛题需要使用计算机运算,一些问题牵涉到相当复杂的算法,使用普通高级语言编写程序效率太低,费时费力,有些同学的基础也比较弱,往往没有足够时间检验结果,精益求精。为了弥补这一薄弱环节,我们开设数学实验课,教学生学会一些常用的数学软件,如Matlap,Mapie,SPSS等,并且编写了适合本校学生的实验指导书。如《数学模型A实验指导书》和《应用多元统计分析实验指导书》以及《数据分析实验指导书》等。
数学建模教学是学生创新能力培养的重要途径,也是我们认识物质世界客观规律的有力工具,具有难度大、涉及面广、形式灵活、对教师和学生要求高等特点,其教学过程是一个不断探索、不断创新、不断完善和提高的过程。以实验室为基础、以学生为中心、以问题为主线、以创新能力培养为目标来组织教学活动是笔者多年教学实践的心得。不仅增强了课堂的吸引力。调动了学生学习的自觉性,还拓宽了学生的知识面,提高了学生综合素质、创新意识和团队协作能力。