张雪峰,吕 赤,张 成
沈阳军区总医院普通外科,辽宁 沈阳 110016
无论平时还是战时,创伤及失血性休克(hemorrhagic shock,HS)都是外科的常见病理状态和重要的研究领域。机体在遭受创伤后,常合并出现HS,创伤和HS可引起炎性介质(如细胞因子和花生四烯酸等)合成增加、白细胞粘附分子表达上调及多形核粒细胞在损伤组织内聚集,引起复杂的应激免疫级联反应,进而出现一系列的病理生理改变,严重时可导致多器官功能障碍[1]。为进一步阐明致病机制并寻找抢救治疗的突破口,需要选择一种合适的创伤合并HS动物模型作为研究平台。尽管一些学者认为动物实验研究的结果很难应用于临床实践,但毕竟动物实验研究可获得某一特定条件下的临床信息,而且临床上许多治疗理念的更新和方法的改进都源于动物实验的研究成果。因此,本文对创伤合并HS的实验动物模型研究进展从致病机制和麻醉与否两方面介绍如下。
1.1 头部创伤合并HS模型 严重的头部创伤常伴随出现低血压和脑缺血,这是严重头部创伤后出现继发性脑损害和死亡的主要原因。头部创伤主要引起两种类型的脑水肿,即细胞毒性脑水肿和血管源性脑水肿[2]。细胞毒性脑水肿是由于细胞膜Na/K通道的通透性增加,脑实质细胞肿胀所致;血管源性脑水肿是由于血脑屏障破坏后,血管通透性增加,富含蛋白质的液体在细胞外间隙集聚所致。高处坠落伤、液体冲击伤、控制性脑皮质撞击伤等多种创伤性颅脑损伤模型均表现为脑水肿[2,3]。在HS合并头部创伤的动物模型中,液体冲击伤和控制性脑皮质撞击伤模型应用最为广泛[4-6]。为阐明HS与头部创伤的相互作用关系,动物实验研究多侧重于探讨采用何种复苏策略可以减轻继发性脑损伤的问题,包括应用何种液体进行复苏、应用多大量液体进行复苏及复苏多长时间等问题。血红蛋白替代物HBOC(hemoglobin-based oxygen carrier)溶液已用于HS合并头部创伤动物模型的研究。结果显示,HBOC在猪的HS复合模型中是非常有效的低容量复苏试剂[7-9]。大多数使用HBOC作为复苏液体进行HS合并头部创伤研究的实验是利用大鼠和猪实施的[10,11]。也有实验使用贺斯(一种择期手术时治疗低血容量的血浆容量扩增剂)和精氨酸血管加压剂研究其对猪HS合并液体冲击性颅脑损伤的影响[12-14]。Bourguignon等[15]利用猪HS合并顶骨冻伤模型研究了早期和延迟液体复苏对预后的影响。
1.2 胸部创伤合并HS 胸部钝器伤是导致肺炎、急性肺损伤和急性呼吸窘迫综合征的独立危险因素,因此,近年来大部分胸部钝器伤动物模型都被设计成肺部挫伤[16]。目前有多种方法可以制成肺挫伤模型,如枪击伤、坠落伤、冲击伤和肺挤压伤等。Davis等[17,18]在研究HS合并肺挫伤(枪击伤致肺挫伤模型)时发现,输入吲哚美辛、环氧酶(COX)、腺苷调节剂和HBOC可以有效控制炎症级联反应的进展。Gryth等[19]也用猪HS合并肺损伤模型研究了高渗盐水复苏对继发性肺损伤的影响。Feinstein等[20]设计了控制性HS和非控制性HS两种实验模型,用以检测精氨酸加压素治疗猪HS合并肺挫伤模型的效果。Pape等[21]评估了羊HS合并肺挫伤(肺挤压伤)后再次遭受髓内插钉术打击后的肺内损害。研究发现,其可导致肺微血管通透性紊乱,如果使用未经扩眼的小口径圆钉就可以防止这种情况出现。
1.3 骨折合并HS 临床上HS经常与骨折伴随发生,而且近年对骨折后的免疫反应研究显示,骨折与失血的反应非常相似。因此,许多动物实验研究将骨折作为HS模型的追加影响因素进行研究[22-28]。Monroy等[29]和Strong等[30]使用小鼠HS合并股骨骨折模型进行研究,发现创伤可以诱导COX-2表达上调和PGE2合成增加,而且用选择性COX-2抑制剂(NS-398)阻滞PGE2合成后可以减轻前炎性细胞因子的产生和COX-2 mRNA的表达。Pelinka等[22]对HS合并双侧股骨骨折的大鼠进行观察,以明确神经元特异性烯醇化酶是否是创伤性颅脑损伤的可靠标记物,并检测了晶体和胶体两种复苏液体复苏后的总肺水量和血管外肺水量。Gray等[31]、Hildebrand等[32]和Mousavi等[33,34]分别用绵羊模型评估了HS后股骨髓内插钉术对全身的影响,研究证实,这可导致肺功能不全和颅内压升高。另外,猪和羊也被用于研究HS对骨折愈合的影响[35,36]。
1.4 软组织损伤合并HS 有研究者将剖腹探查术应用于HS模型,Chaudry等[37]证实HS合并腹部探查手术后的动物病死率要显著高于单纯HS的动物。另外,Pretorius等[28]在用狒狒研究骨折及软组织损伤等创伤和HS的实验中发现,要制成HS合并肺损伤模型就必须同时造成骨折和软组织损伤。Cai等[38]建立了鼠的HS合并骨折及软组织损伤模型,用以观察器官受到创伤时肥大细胞对免疫功能的影响。
1.5 多发伤合并HS Howes等[25]用猪制备了多处钝伤模型(股骨骨折、肝脏撕裂伤和软组织挤压伤),以研究伤后注射重组VIIa因子是否可以减少出血。Matsutani等[39]研究证实小鼠在经历因创伤(骨折、剖腹手术)和HS而制成的创伤性HS后,是否出现肝脏损伤主要取决于年龄。Guan等[24]研究了大鼠HS合并多发创伤(双侧股骨骨折和剖腹手术)后器官的凋亡情况。这一模型与临床实际非常接近,因此更适用于创伤患者的研究。然而,如果多发创伤的伤情过于严重,动物会出现立即死亡。因此,这一模型适于研究多发创伤后的早期病理改变,但实验结果可能难以重复。
2.1 创伤合并HS麻醉模型 目前大多数HS动物模型均采用麻醉动物进行研究,采用这种动物模型具有动物依从性好、无道德伦理问题等优点,但其缺陷是不可避免地要受到麻醉的影响。Mohr等[40]研究了轻度低温对猪创伤合并HS凝血功能的影响,结果发现,创伤合并HS在镇静状态下轻度低温对改善凝血系统功能有积极作用,而不加剧创伤合并HS对凝血功能造成的不良影响。George等[41]在研究环境低温对猪创伤性HS预后的影响时也发现,环境低温可以明显降低实验动物的氧耗,并改善细胞应激和器官功能,有利于休克的复苏。这些研究结果与习惯认识明显不同,也与目前临床上的治疗指南相反。本研究认为:麻醉引起的诱导性低温是导致基础研究结果与临床指南不一致的主要原因。由于麻醉引起的诱导性低温明显降低了机体的应激反应,有利于创伤后的复苏,因此,环境低温可从致伤因素转变为保护性因素[42]。鉴于麻醉对研究结果的影响,在选择动物模型时应根据研究目的及需要选择适当的动物模型。
2.2 创伤合并HS非麻醉模型 由于非麻醉动物模型贴近临床实际,因此研究者很早就开始采用这种模型。但由于这种模型需要特殊处理,同时又可能涉及道德伦理问题,因此限制了其广泛的应用。Vázquez等[43]利用仓鼠研究血管活性血红蛋白溶液对HS预后的影响。结果发现血管活性血红蛋白溶液对稳定血流动力学有益。Zhang等[44]研究非麻醉状态下鼠失血性休克模型中聚羟亚烃188 (一种具有血液流变学与细胞保护功能的共聚物)的作用,发现它能延长失血性休克鼠的生存时间,减少复苏过程中液体的需求及组织损伤。Cai等[45]研究清醒时动物失血性休克模型在复苏过程中应用乙基丙酮酸盐比传统的人工胶体能更迅速地恢复平均动脉压,降低血清肿瘤坏死因子TNF-α水平,从而进一步减轻炎症反应。由于动物处于清醒状态,消除了麻醉可能对心血管系统和代谢系统的影响,因此,非麻醉动物模型更多用于HS在此类方面的研究。但在采取这种动物模型时,往往需要做好前期的处理工作。
在选取动物模型研究时,研究者通常愿意选择同性别、同年龄、同种属的健康动物以减少实验误差。然而在临床实际条件下,创伤患者的种族、年龄、性别及既往病史等实际条件各不相同。同时许多外部因素,如软组织损伤程度、是否喝酒或吸毒以及环境低温等也需考虑。因此,要想设计出一种既与临床实际非常接近,又能将实验结果直接应用于人类的创伤合并HS实验动物模型是非常困难的。虽然人类和动物之间的差异显著,但医学的进步离不开动物实验研究。了解不同模型的特点和不足,对于根据研究目的合理选择实验动物模型及分析实验结果很有裨益。
[1] Benhamou Y,Favre J,Musette P,et al.Toll-like receptors 4 contribute to endothelial injury and inflammation in hemorrhagic shock in mice[J].Crit Care Med,2009,37(5):1724-1728.
[2] Nag S,Manias JL,Stewart DJ.Pathology and new players in the pathogenesis of brain edema[J].Acta Neuropathol,2009,118(2):197-217.
[3] Thal SC,Schaiblze EV,Neuhaus W,et al.Inhibition of proteasomal glucocorticoid receptor degradation restores dexamethasone-mediated stabilization of the blood-brain barrier after traumatic brain injury[J].Crit Care Med,2013,41(5):1305-1315.
[4] Kerby JD,Sainz JG,Zhang F,et al.Resuscitation from hemorrhagic shock with HBOC-201 in the setting of traumatic brain injury[J].Shock,2007,27(6):652-656.
[5] Rice J,Philbin N,Handrigan M,et al.Vasoactivity of bovine polymerized hemoglobin (HBOC-201) in swine with traumatic hemorrhagic shock with and without brain injury[J].Trauma,2006,61(5):1085-1099.
[6] Hayward NM,Tuunanen PI,Immonen R,et al.Magnetic resonance imaging of regional hemodynamic and cerebrovascular recovery after lateral fluid-percussion brain injury in rats[J].J Cereb Blood Flow Metab,2011,31(1):166-177.
[7] Rice J,Philbin N,Light R,et al.The effects of decreasing low-molecular weight hemoglobin components of hemoglobin-based oxygen carriers in swine with hemorrhagic shock[J].J Trauma,2008,64(5):1240-1257.
[8] Mongan PD,Moon-Massat PF,Rentko V,et al.Regional blood flow after serial normovolemic exchange transfusion with HBOC-201 (Hemopure) in anesthetized swine[J].J Trauma,2009,67(1):51-60.
[9] Stern S,Rice J,Philbin N,et al.Resuscitation with the hemoglobin-based oxygen carrier,HBOC-201,in a swine model of severe uncontrolled hemorrhage and traumatic brain injury[J].Shock,2009,31(1):64-79.
[10] Patel MB,Feinstein AJ,Saenz AD,et al.Prehospital HBOC-201 after traumatic brain injury and hemorrhagic shock in swine[J].Trauma,2006,61(1):46-56.
[11] King DR,Cohn SM,Proctor KG.Resuscitation with a hemoglobin-based oxygen carrier after traumatic brain injury[J].Trauma,2005,59(3):553-560.
[12] Crookes BA,Cohn SM,Bonet H,et al.Building a better fluid for emergency resuscitation of traumatic brain injury[J].Trauma,2004,57(3):547-554.
[13] Feinstein AJ,Patel MB,Sanui M,et al.Resuscitation with pressors after traumatic brain injury[J].Am Coll Surg,2005,201(4):536-545.
[14] Sanui M,King DR,Feinstein AJ,et al.Effects of arginine vasopressin during resuscitation from hemorrhagic hypotension after traumatic brain injury[J].Crit Care Med,2006,34(2):433-438.
[15] Bourguignon PR,Shackford SR,Shiffer C,et al.Delayed fluid resuscitation of head injury and uncontrolled hemorrhagic shock[J].Arch Surg,1998,133(4):390-398.
[16] Ozel SK,Ozel HB,Colakolu N,et al.Protective effect of the thoracic cage on parenchyma in response to trauma direction in blunt thoracic trauma:an experimental study[J].Ulus Travma Acil Cerrahi Derg,2010,16(4):287-292.
[17] Davis KA,Fabian TC,Croce MA,et al.Prostanoids:early mediators in the secondary injury that develops after unilateral pulmonary contusion[J].Trauma,1999,46(5):824-831.
[18] Melton SM,Davis KA,Moomey CB Jr,et al.Mediatordependent secondary injury after unilateral blunt thoracic trauma[J].Shock,1999,11(6):396-402.
[19] Gryth D,Rocksén D,Drobin D,et al.Effects of fluid resuscitation with hypertonic saline dextrane or Ringer's acetate after nonhemorrhagic shock caused by pulmonary contusion[J].J Trauma,2010,69(4):741-748.
[20] Feinstein AJ,Cohn SM,King DR,et al.Early vasopressin improves short-term survival after pulmonary contusion[J].Trauma,2005,59(4):876-882.
[21] Pape HC,Dwenger A,Regel G,et al.Pulmonary damage after intramedullary femoral nailing in traumatized sheep-is there an effect from different nailing methods?[J].Trauma,1992,33(4):574-581.
[22] Pelinka LE,Jafarmadar M,Redl H,et al.Neuron-specific-enolase is increased in plasma after hemorrhagic shock and after bilateral femur fracture without traumatic brain injury in the rat[J].Shock,2004,22(1):88-91.
[23] Liu LM,Hu DY,Chen HS,et al.The effect of different volumes of fluid resuscitation on traumatic-hemorrhagic shock at high altitude in the unacclimated rat[J].Shock,2004,21(1):93-96.
[24] Guan J,Jin DD,Jin LJ,et al.Apoptosis in organs of rats in early stage after polytrauma combined with shock[J].Trauma,2002,52(1):104-111.
[25] Howes DW,Stratford A,Stirling M,et al.Administration of recombinant factor VIIa decreases blood loss after blunt trauma in noncoagulopathic pigs[J].Trauma,2007,62(2):311-315.
[26] Majetschak M,Cohn SM,Obertacke U,et al.Therapeutic potential of exogenous ubiquitin during resuscitation from severe trauma[J].Trauma,2004,56(5):991-999.
[27] Aguilar MM,Battistella FD,Owings JT,et al.Posttraumatic lymphocyte response:a comparison between peripheral blood T cells and tissue T cells[J].Trauma,1998,45(1):14-18.
[28] Pretorius JP,Schlag G,Redl H,et al.The′lung in shock′as a result of hypovolemic-traumatic shock in baboons[J].Trauma,1987,27(12):1344-1353.
[29] Monroy MA,Opperman KK,Pucciarelli M,et al.THE PPARgamma ligand 15d-PGJ2 modulates macrophage activation after injury in a murine trauma model[J].Shock,2007,28(2):186-191
[30] Strong VE,Mackrell PJ,Concannon EM,et al.Blocking prostaglandin E2 after trauma attenuates pro-inflammatory cytokines and improves survival[J].Shock,2000,14(3):374-379.
[31] Gray AC,White TO,Clutton E,et al.The stress response to bilateral femoral fractures:a comparison of primary intramedullary nailing and external fixation[J].J Orthop Trauma,2009,23(2):90-97.
[32] Hildebrand F,Giannoudis P,van Griensven M,et al.Secondary effects of femoral I nstrumentation on pulmonary physiology in a standardised sheep model:what is the effect of lung contusion and reaming?[J].Injury,2005,36(4):544-555.
[33] Mousavi M,David R,Schwendenwein I,et al.Influence of controlled reaming on fat intravasation after femoral osteotomy in sheep[J].Clin Orthop Relat Res,2002,394:263-270.
[34] Mousavi M,Kolonja A,Schaden E,et al.Intracranial pressure-alterations during controlled intramedullary reaming of femoral fractures:an animal study[J].Injury,2001,32(9):679-682.
[35] Fu WZ,Mao AR,Luo TH,et al.Changes in endothelial progenitor cells and their implications in multiple organ dysfunction syndrome caused by trauma in pigs[J].Zhongguo Wei Zhong Bing Ji Jiu Yi Xue,2010,22(6):346-350.
[36] Schmidt BleekK,Schell H,Kolar P,et al.Cellular composition of the initial fracture hematoma compared to a muscle hematoma:a study in sheep[J].J Orthop Res,2009,27(9):1147-1151.
[37] Chaudry IH,Wang P,Singh G,et al.Rat and mouse models of hypovolemic-traumatic shock[M]//Schlag G,Redl H.Pathophysiology of shock,sepsis,and organ failure.Berlin,Heidelberg:Springer-Verlag,1993:371-383.
[38] Cai C,Cao Z,Loughran PA,et al.Mast cells play a critical role in the systemic inflammatory response and end-organ injury resulting from trauma[J].J Am Coll Surg,2011,213(5):604-615.
[39] Matsutani T,Kang SC,Miyashita M,et al.Liver cytokine production and ICAM-1 expression following bone fracture,tissue trauma,and hemorrhage in middle-aged mice[J].Am J Physiol Gastrointest Liver Physiol,2007,292(1):G268-G274.
[40] Mohr J,Ruchholtz S,Hildebrand F,et al.Induced hypothermia does not impair coagulation system in a swine multiple trauma model[J].J Trauma Acute Care Surg,2013,74(4):1014-1020.
[41] George ME,Mulier KE,Beilman GJ.Hypothermia is associated with improved outcomes in a porcine model of hemorrhagic shock[J].Trauma,2010,68(3):662-668.
[42] Zhang C,Gao GR,Jiang HY,et al.Effects of environmental hypothermia on hemodynamics and oxygen dynamics in conscious swine model of hemorrhagic shock[J].World Journal of Emergency Medicine,2012,3(2):128-134.
[43] Vázquez BY,Hightower CM,Martini J,et al.Vasoactive hemoglobin solution improves survival in hemodilution followed by hemorrhagic shock[J].Crit Care Med,2011,39(6):1461-1466.
[44] Zhang R,Hunter RL,Gonzalez EA,et al.Poloxamer 188 prolongs survival of hypotensive resuscitation and decreases vital tissue injury after full resuscitation[J].Shock,2009,32(4):442-450.
[45] Cai B,Brunner M,Wang H,et al.Ethyl pyruvate improves survival in awake hemorrhage[J].J Mol Med,2009,87(4):423-433.