贾安峰 冯京海 张敏红
随着畜禽养殖业的快速发展,人们在追求畜产品数量的同时,也越来越关注畜产品品质。动物骨骼肌由不同类型的肌纤维构成,肌纤维的类型直接影响肌内脂肪含量、嫩度以及肉色等肉品质特性[1]。动物出生后骨骼肌肌纤维类型持续转化[2]。近年来,围绕骨骼肌肌纤维的分类、骨骼肌肌纤维与肉品质的关系以及影响骨骼肌肌纤维类型转化的因素及其机制,国内外开展了大量研究工作。
骨骼肌由不同类型的肌纤维构成。根据肌纤维的形态、代谢和收缩特点,大致可分为Ⅰ型肌纤维(红肌纤维或氧化型肌纤维)和Ⅱ型肌纤维(白肌纤维或酵解型肌纤维)2大类。根据肌动蛋白重链上三磷酸腺苷(ATP)酶活性的强弱可以将肌纤维分成慢速氧化型(slow-twitch and oxidative,SO)、快速氧化酵解型(fast-twitch and oxidativeglycolytic,FOG)、快速酵解型(fast-twitch and glycolytic,FG)3 种类型[3]。根据琥珀酸脱氢酶(succinodehydrogenase,SDH)的染色结果可以把肌纤维分为 βR、αR、αW(β:慢速;α:快速;R:红;W:白)3种类型[4];根据肌动蛋白重链上ATP酶对酸碱的稳定性可以将肌纤维分成Ⅰ、Ⅱa、Ⅱb 3种类型[5]。上述分类方法一般采用组织化学染色的方法,不需要专用抗体,成本低,而且肌纤维染色结果直观清晰,但缺点是结果不够精确,重复性差,且费时费力,还必须采用大块的肌肉组织。目前在成年哺乳动物骨骼肌中共发现4种肌球蛋白重链(MyHC)亚型,分别为Ⅰ、2a、2b和 2x。Chang等[6-7]证实这4种亚型均在猪骨骼肌中表达,并根据这4种亚型所表达的比例,将猪骨骼肌肌纤维分为Ⅰ、Ⅱa、Ⅱb和Ⅱx 4种类型,这种方法准确、快速,是目前最为常用的骨骼肌肌纤维分类方法。
骨骼肌肌纤维类型的组成直接影响肌肉品质。Ⅰ型肌纤维直径较细,单位面积中肌纤维的数量多,故肌内脂肪含量高,而肌内脂肪含量影响肌肉的嫩度和风味;Serra等[8]发现肌内脂肪含量与Ⅰ型肌纤维含量成正相关。因此骨骼肌中Ⅰ型肌纤维的比例越高,肌肉剪切力越小,嫩度越高。约克夏猪肌肉中Ⅰ型肌纤维所占比例高于汉普夏猪,所以相比之下,约克夏猪肉质更嫩[9]。中国的地方品种如金华猪、北京黑猪骨骼肌中Ⅰ型肌纤维的比例高于“杜×长×大”等引进品种,这些地方品种的猪肉嫩度也优于引进品种[10]。骨骼肌肌纤维类型也会影响到肌肉的色泽。Ⅰ型肌纤维中肌红蛋白和血红蛋白的含量高,因此Ⅰ型肌纤维比例高的肌肉肉色鲜红;另外,Ⅱ型肌纤维糖原酵解能力强,在屠宰过程中易产生大量乳酸,导致肌肉pH迅速降低,因此Ⅱ型肌纤维为主的肌肉易出现PSE 肉[11]。
耐力训练可以诱导Ⅱ型肌纤维向Ⅰ型肌纤维转化。研究发现,耐力训练使人骨骼肌中Ⅱb型肌纤维比例降低,而Ⅱa型肌纤维比例升高[12],在小鼠中也发现同样的结果[13]。还有些研究发现,耐力训练导致人和小鼠比目鱼肌中Ⅰ型肌纤维比例增加[14]。上述研究表明,耐力训练使Ⅱ型肌纤维向Ⅰ型肌纤维方向转化,并按Ⅱb→Ⅱx→Ⅱa→Ⅰ的顺序依次转化,而且不同肌肉组织、不同运动时间,转化起点和终点不同,但是转化的方向和趋势一致。
力量训练可以诱导Ⅰ型肌纤维向Ⅱ型肌纤维转化。Jansson等[15]对运动员进行高强度脚踏车训练5周,发现腿肌中Ⅰ型肌纤维比例从57%下降到48%,Ⅱ型肌纤维比例从32%上升到38%;并且Yarasheski等[16]在大鼠高强度抵抗训练中发现,股直肌中Ⅰ型肌纤维比例显著降低,Ⅱ型肌纤维比例显著升高。在赛马中也发现高强度的运动可以使Ⅱx、Ⅱb型肌纤维比例升高,Ⅰ型肌纤维比例降低[17]。力量训练诱导肌纤维类型转化与运动强度也有关系,小强度可使Ⅰ型肌纤维增加,Ⅱb型肌纤维减少;中等强度可使Ⅰ、Ⅱb型肌纤维减少,Ⅱa型肌纤维增多;高强度可使Ⅱx型肌纤维增加[18]。可见,力量训练使Ⅰ型肌纤维向Ⅱ型肌纤维方向转化,且转化的结果与力量训练的强度有关,强度越大,从Ⅰ型肌纤维向Ⅱb型肌纤维转化的趋势越大。
衰老导致肌肉萎缩,还可以造成肌纤维类型从Ⅱ型肌纤维向Ⅰ型肌纤维的转化。在大鼠的肌肉中,随着年龄的增加,Ⅱb型肌纤维比例降低,Ⅱx、Ⅱa、Ⅰ型肌纤维比例增加[19];在衰老大鼠的比目鱼肌中,Ⅱa型肌纤维比例降低,Ⅰ型肌纤维比例增加[19-20]。Larsson 等[21]认为衰老造成肌肉萎缩和肌纤维类型的转化与神经系统的变化有关。肌肉萎缩衰老之后,神经冲动的频率降低,又由于Ⅰ型是慢速型肌纤维,从肌肉的适应性来说,肌肉衰老也会造成Ⅰ型肌纤维比例增加。
持续高温(33℃)应激可以使生长猪Ⅱ型肌纤维比例增多,Ⅰ型肌纤维比例降低,并能够引起肌肉的酵解潜能增加[22]。41℃高温应激可以增强人抗阻训练后的哺乳动物雷帕霉素靶蛋白(mTOR)信号,这间接表明高温应激诱导Ⅰ型肌纤维向Ⅱ型肌纤维的转化[23];31℃高温应激促进金鱼的厌氧代谢途径,抑制琥珀酸脱氢酶的活性,ATP酶活性增强,这也间接表明高温应激诱导Ⅰ型肌纤维向Ⅱ型肌纤维的转化[24];但 Yoshitaka等[25]发现在41℃高温应激条件下,小鼠的比目鱼肌中Ⅰ型肌纤维和Ⅱ型肌纤维的比例未发生明显变化;Yamaguchi等[26]体外试验发现,提高培养温度导致小鼠成肌细胞MyHCⅠ的蛋白和mRNA表达量升高,小鼠成肌细胞中MyHC2x的mRNA表达量降低。这表明体温升高可以促进Ⅱ型肌纤维向Ⅰ型肌纤维的转化,且这一作用可能与激活过氧化物酶体增殖物激活受体辅助活化因子(transcriptional peroxisome proliferator-activated receptor α coactivator-1,PGC-1α)通道有关。高温应激如何影响肌纤维类型的转化以及具体机制还需进一步研究。低温同样影响肌纤维类型的转化。Duchamp等[27]发现4℃低温提高雏鸭骨骼肌Ⅰ型肌纤维的比例。Daichi等[28]也发现4℃低温诱导雏鸡骨骼肌Ⅰ型肌纤维的比例升高,同时PGC-1α mRNA表达量升高,表明冷应激影响肌纤维类型转化可能与PGC-1α有关。
在母猪妊娠期和泌乳期进行蛋白质限饲,可导致仔猪Ⅰ型肌纤维比例显著升高,Ⅱb型肌纤维比例显著降低[29],对怀孕母猪进行能量限饲也可导致同样结果[30],另外在怀孕母羊上也有相似结果[31];给仔猪限饲,发现仔猪Ⅰ型肌纤维比例升高[32],在肉仔鸡和犊牛上也有类似发现[33-34]。对生长猪进行蛋白质和能量限饲,发现Ⅱa型肌纤维比例升高,Ⅱb型肌纤维比例降低,同时肌脂蛋白表达量也升高。肌脂蛋白可抑制内质网从胞浆中摄入钙离子(Ca2+),表明限饲诱导的肌纤维类型转化与胞内Ca2+信号有关[35]。而在饲料中添加共轭亚油酸,可以使生长猪背最长肌中MyHCⅠ、MyHC2a的mRNA表达量升高,MyHC2x的mRNA表达量降低[36]。
外界因素如运动、营养、环境高温等因素可通过神经内分泌信号,作用于肌纤维细胞膜上的相关受体,调控细胞内不同的信号调节通路,最终影响肌纤维类型的转化。
CaN信号通路是调控骨骼肌肌纤维类型转化的重要途径。肌纤维内Ca2+持续低幅度升高可上调CaN蛋白和 mRNA的表达量[37],激活的 CaN可使胞质中激活的T细胞核因子(nuclear factor of activated T cells,NFAT)去磷酸进入胞核,调控肌纤维类型转化相关靶基因的表达[38];CaN还可以通过肌细胞增强因子(myocyte enhancer factor 2a,MEF2)与 PGC-1α 启动子上 MEF2-BS 位点结合后调节肌纤维类型的转化[39]。过表达CaN小鼠的骨骼肌中Ⅰ、Ⅱa型肌纤维比例升高,而IIb型肌纤维比例降低[40];敲除CaN基因小鼠的骨骼肌中Ⅰ型肌纤维比例下降,Ⅱ型肌纤维比例升高[41];用CaN抑制剂环孢霉素A注射成年大鼠后,比目鱼肌中的Ⅰ型肌纤维比例下降,Ⅱ型肌纤维比较升高[42];环孢霉素A还可以抑制低频电刺激诱导的Ⅱ型肌纤维向Ⅰ型肌纤维的转化[43]。可见,上调CaN可诱导Ⅱ型肌纤维向Ⅰ型肌纤维的转化。
运动可通过调控胞内Ca2+/CaN信号通路影响肌纤维类型的转化。廖八根等[44]报道,CaN抑制剂环孢霉素A可抑制耐力运动诱导肌纤维类型转化;另有研究发现,游泳或跑步训练中,CaN活性变化与肌纤维类型转化在时间和空间分布上相一致[45],表明CaN信号通路参与Ⅱ型肌纤维向Ⅰ型肌纤维的转化。
CaMK信号通路是调控骨骼肌肌纤维类型转化的另一条重要途径。CaMK可被肌纤维内瞬时升高的Ca2+激活,而后在磷酸化组蛋白脱乙酰化酶的作用下从胞核转移至胞浆,进一步活化MEF2,参与Ⅰ型肌纤维基因转录的调控;激活的CaMK还可以通过腺苷-3',5'-环化一磷酸应答元件结合蛋白(CREB)结合到PGC-1α启动子上,进而调节肌纤维类型的转化[46-47]。
运动可通过调控胞内Ca2+/CaMK信号通路影响肌纤维类型的转化。力量训练时,体内CaMKⅡ的活性增加,且运动强度越大,CaMKⅡ活性越高[48],表明Ca2+/CaMK信号通路参与运动肌纤维类型转化的调控。
研究发现,AMPK激活剂阿卡地新可诱导大鼠趾长伸肌Ⅱb型肌纤维向Ⅱx型肌纤维转化[49]。而敲除AMPKa2基因的小鼠耐力训练时Ⅱb型肌纤维向Ⅱa、Ⅱx型肌纤维转化显著降低,表明AMPK信号通路参与Ⅱb型肌纤维向Ⅱa型肌纤维的转化[50]。
PPAR信号通路可能是调控骨骼肌肌纤维类型转化的一条重要途径。PPAR可通过其亚基与PGC-1α启动子上过氧化物酶体增殖物反应元件(PPRE)结合,进而调节 PGC-1ɑ的活性,通过PGC-1α调节肌纤维类型的转化。研究发现,超表达PPARγ基因小鼠骨骼肌中Ⅱ型肌纤维向Ⅰ型肌纤维转化[51];敲除PPAR基因会导致小鼠骨骼肌中Ⅰ型肌纤维向Ⅱ型肌纤维转化[52];且PPAR在Ⅰ型肌纤维中的表达量显著高于Ⅱ型肌纤维[53]。表明PPAR可诱导Ⅱ型肌纤维向Ⅰ型肌纤维的转化。耐力训练可以增加骨骼肌中PPAR的表达量,使线粒体内脂肪酸氧化酶的含量及活性增加[54],表明PPAR信号通路可能参与了运动对肌纤维类型转化的调控。
骨骼肌由不同类型的肌纤维构成,肌纤维类型直接影响肉品质特性。运动、衰老、营养和高温应激等因素可能通过神经内分泌信号,调控胞内的Ca2+/CaN、Ca2+/CaMK、AMPK或PPAR信号通路,影响肌纤维类型的转化。目前,这方面的研究主要集中在运动医学上,对于运动方式、运动强度影响肌纤维类型转化的机制较为清楚,但有关营养、应激等因素影响肌纤维类型转化的研究还处于起始阶段。深入研究动物生产过程中影响肌纤维类型转化的因素和机制,将有助于今后通过营养、环境或遗传措施改善肉品质。
[1] 高儒松,程志斌,杨正华.肌纤维类型与猪肉品质的关系[J].中国畜牧兽医,2009,36(4):191-195.
[2] SCHIAFFINO S,REGGIANI C.Fiber types in mammalian skeletal muscles[J].Physiological Reviews,2011,91(4):1447-1531.
[3] PETER J B,BAINARD R J,EDGERTON V R,et al.Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits[J].Biochemistry,1972,11(14):2627-2633.
[4] ASHMORE C R,DOERR L.Comparative aspect of muscle fiber types in different species[J].Experimental Neurology,1971,31(3):408-418.
[5] BROOK M H,KAISER K K.Muscle fiber types:how many and what kind?[J].Archives of Neurology,1970,23(4):369-379.
[6] CHANG K C,FERNANDESK,DAUNCEY M J.Molecular characterization of a developmentally regulated porcine skeletal myosin heavy chain gene and its 5’regulatory region[J].Journal of Cell Science,1995,108(Pt4):1779-1789.
[7] CHANG K C,FEMANDES K.Developmental expression and 5’end cDNA cloning of the porcine 2x and 2b myosin heavy chain genes[J].DNA Cell Biology,1997,16(12):1429-1437.
[8] SERRA X,GIL F,PEREZ E,et al.A comparison of carsass,meat quality and histochemical characteristics of Iberian and Landrace pigs[J].Livestock Production Science,1998,56(3):215-223.
[9] ESSEN G B,FJELKNER M S.Skeletal muscle characteristics in muscles of pigs in relation to sensory properties of meat[J].Meat Science,1985,13(1):33-45.
[10] 王楚端,陈清明.长白猪、北京黑猪及民猪肌肉组织学特性研究[J].中国畜牧杂志,1996,32(4):33-34.
[11] IMMONEN K,RUUSUNEN M,HISSA K,et al.Bovine muscle glycogen concentration in relation to finishing diet,slaughter and ultimate pH[J].Meat Science,2000,55(1):25-31.
[12] SCOTT T,MATTHEW H,ANDREW C,et al.Single muscle fiber adaptations with marathon training[J].Journal of Applied Physiology,2006,101(3):721-727.
[13] SUGIURA T,MORIMOTO A,MURAKAMI N.Effects of endurance training on myosin heavy-chain isoforms and enzyme activity in the rat diaphragm[J].Pflügers Archiv-European Journal of Physiology,1992,421(1):77-81.
[14] LEISSON K,JAAKMA U,SEENE T.Adaptation of equine locomotor muscle fiber types to endurance and intensive high speed training[J].Journal of Equine Veterinary Science,2008,28(7):395-401.
[15] JANSSON E,ESBJÖRNSSON M,JACOBS I.Increase in the proportion of fast-twitch muscle fibers by sprint training in males[J].Acta Physiologica Scandinavica,1990,140(3):359-363.
[16] YARASHESKI K E,LEMON PW R,GILLOTEAUX J.Effect of heavy-resistance exercise training on muscle fiber composition in young rats[J].Journal of Applied Physiology,1990,69(2):434-437.
[17] YAMANO S,ETO D,HIRAGA A,et al.Recruitment pattern of muscle fiber type during high intensity exercise(60-100%VO2max)in Thoroughbred horses[J].Research in Veterinary Science,2006,80(1):109-115.
[18] 张宇,满维祥,汤长发.不同强度运动训练对大鼠比目鱼肌肌纤维类型与MHC亚型的影响[J].北京体育大学学报,2011,34(8):48-56.
[19] LARSSON L,ANSVED T.Effects of ageing on the motor unit[J].Progress in Neurobiology,1995,45(5):397-458.
[20] ŠKORJANC D,TRAUB I,PETTE D.Identical responses of fast muscle to sustained activity by low-frequency stimulation in young and aging rats[J].Journal of Applied Physiology,1998,85(2):437-441.
[21] SULLIVAN V K,POWERSSK,CRISWELL D S,et al.Myosin heavy chain composition in young and old rat skeletal muscle:effects of endurance exercise[J].Journal of Applied Physiology,1995,78(6):2115-2120.
[22] LARSSON L,ANSVED T,EDSTRÖM L,et al.Effects of age on physiological,immunohistochemical and biochemical properties of fast-twitch single motor units in the rat[J].The Journal of Physiology,1991,443:257-275.
[23] 刘圈炜.热应激对生长猪肌纤维类型和营养利用率的影响[D].博士学位论文.北京:中国农业科学院,2007.
[24] RYO K,HISASHI N,YUJI O,et al.Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle[J].Journal of Physiological Sciences,2011,61(2):131-140.
[25] IAN J,MARGARET L.Temperature induced variation in the distribution of different types of muscle fibre in the goldfish(Carassius auratus)[J].Journal of Comparative Physiology,1978,124(2):111-116.
[26] YOSHITAKA O,SUMIO Y,AYUMI G,et al.Effects of heat stress on muscle mass and the expression levels of heat shock proteins and lysosomal cathepsin L in soleus muscle of young and aged mice[J].Molecular and Cellular Biochemistry,2012,369(1/2):45-53.
[27] YAMAGUCHI E,TAKAYOSHI S,HIDEAKI A,et al.Continuous mild heat stress induces differentiation of mammalian myoblasts,shifting fiber type from fast to slow[J].American Journal of Physiology,Cell Physiology,2010,298(1):C140-C148.
[28] DUCHAMP C,COHEN-ADAD F,ROUANET J L,et al.Histochemical arguments for muscular non-shivering thermogenesis in Muscovy ducklings[J].Journal of Physiology,1992,457:27-45.
[29] DAICHI I,YUKIO K,MIHO H.Possible roles of myostatin and PGC-1 in the increase of skeletal muscle and transformation of fiber type in cold-exposed chicks,expression of myostatin and PGC-1 in chicks exposed to cold[J].Domestic Animal Endocrinology,2009,37:12-22.
[30] 赵茹茜,邢鹏,杨倩.母猪限饲对后代断奶仔猪肌纤维特性的影响[J].南京农业大学学报,2011,34(1):101-106.
[31] BEE G.Effect of early gestation feeding,birth weight,and gender of progeny on muscle fiber characteristics of pigs at slaughter[J].Journal of Animal Science,2004,82(3):826-836.
[32] FAHEY A J,BRAMELD J M,PARR T,et al.The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb[J].Journal of Animal Science,2005,83(11):2564-2571.
[33] LOUIS L,PATRICK E,YVES M B,et al.Early postnatal food intake alters myofiber maturation in pig skeletal muscle1[J].The Journal of Nutrition,2003,133(1):140-147.
[34] 李玥,许雪萍,杨晓静,等.早期限饲对肉鸡肌肉生长及肌纤维类型的影响[J].农业生物技术学报,2006,14(6):855-860.
[35] ANNA M B,BRIGITTE P,YVES G.Muscle fibre characteristics in four muscles of growing male cattle;Ⅱ.Effect of castration and feeding level[J].Livestock Production Science,1998,53(1):25-36.
[36] DA COSTA N,MCGILLIVRAY C,BAI Q,et al.Restriction of dietary energy and protein induces molecular changes in young porcine skeletal muscles[J].The Journal of Nutrition,2004,134(9):2191-2199.
[37] 苏展.共轭亚油酸对生长育肥猪肉质和肌纤维类型的影响[D].硕士学位论文.重庆:西南大学,2012.
[38] SWOAP SVJ,HUNTER R,STEVENSON E J,et al.The calcineurin-NFAT pathway and muscle fibre-type gene expression[J].American Journal of Physiology,Cell Physiology,2000,279(4):915-924.
[39] 徐象珍.TNF-α 受体ⅠCRD4区衍生小肽 Pep3对TNF-α诱导乳鼠心肌细胞肥大的保护作用及机制研究[D].硕士学位论文.广州:中山大学,2010.
[40] LIU Y W,SHEN T S,RANDALL W R,et al.Signaling pathway in activity-dependent fiber type plasticity in adult skeletal muscle[J].Journal of Muscle Research and Cell Motility,2005,26(1):13-21.
[41] CHAKKALAKAL JV,HARRISON M A,CARBONETTO S,et al.Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice[J].Human Molecular Genetics,2004,13(4):379-388.
[42] PARSONS S A,WILKINS B J,BUENO O F,et al.Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice[J].Molecular Cellular Biology,2003,23(12):4331-4343.
[43] CHIN E R,OLSON E N,RICHARDSON JA,et al.A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type[J].Genes & Development,1998,12(16):2499-2509.
[44] SERRANO A L,MURGIA M,PALLAFACCHINA G,et al.Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(23):13108-13113.
[45] 廖八根,徐勇,薛耀明.钙调神经磷酸酶在耐力运动大鼠骨骼肌纤维类型和大小转变中的作用[J].中国运动医学杂志,2008,27(5):551-555,613.
[46] GRONDARD C,BIONDI O,PARISET C,et al.Exercise-induced modulation of calcineurin activity parallels the time course of myofibre transitions[J].Journal of Cellular Physiology,2008,214(1):126-135.
[47] MCKINSEY T A,ZHANG C L,LU J,et al.Signaldependent nuclear export of a histone deacetylase regulates muscle differentiation[J].Nature,2000,408(6808):106-111.
[48] GUERFALI I,MANISSOLLE C,DURIEUX A C,et al.Calcineurin A and CaMKIV transactivate PGC-1α promoter,but differentially regulate cytochrome c promoter in rat skeletal muscle[J].Pflügers Archiv-European Journal of Physiology,2007,454(2):297-305.
[49] SCHIAFFINO S,SANDRI M,MURGIA M.Activitydependent signaling pathways controlling muscle diversity and plasticity[J].Physiology,2007,22(4):269-278.
[50] SUWA M,NAKANO H,KUMAGAI S.Effects of chronic AICAR treatment on fiber composition,enzyme activity,UCP3,and PGC-1 in rat muscles[J].Journal of Applied Physiology,2003,95(3):960-968.
[51] GIBALA M J,MCGEE S L,GARNHAM A P,et al.Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle[J].Journal of Applied Physiology,2009,106(3):929-934.
[52] KIEC'-WILK B,DEMBIN'SKA-KIEC'A,OLSZANECKA A,et al.The selected pathophysiological aspects of PPARs activation[J].Journal of Physiology and Pharmacology,2005,56(2):149-162.
[53] SCHULER M,ALI F,CHAMBON C,et al.PGC1alpha expression is controlled in skeletal muscles by PPARbeta,whose ablation results in fiber-type switching,obesity,type 2 diabetes[J].Cell Metabolism,2006,4(5):407-414.
[54] WANG Y X,ZHANG C L,YU R T,et al.Regulation of muscle fiber type and running endurance by PPARδ[J].PLoS Biology,2004,2(10):1532-1539.
[55] RICHARDSON B A,HUGHES J P,BENKI S.Statistical methods for determining the accuracy of quantitative polymerase chain reaction-based tests[J].Statistics in Medicine,2007,26(4):895-902.