摘要 链环投影图与符号平图有着一一对应关系,这种对应被应用于构造链环图表.研究平图对应的链环分支数,是研究通过平图的中间图构造所对应的链环的基本问题之一.给出了关于交错三角格图的链环分支数的进一步结论.
关键词 交错三角格图; Reidemeister变换; 链环分支数
中图分类号 O157.5 文献标识码 A 文章编号 1000-537(2014)01-086-4
参考文献:
[1]GODSIL C, ROYLE G. Algebraic graph theory[M]. New York: SpringerVerlag, 2001.
[2]JIN X A, DONG F M, TAY E G. Determining the component number of links corresponding to lattices[J]. J Knot Theor Ramif, 2009,18(12):17111726.
[3]SHANK H. The theory of leftright paths[M]. Berlin: SpringerVerlag, 1975.
[4]PISANSKI T, TUCKER T W, ZITNIK A. Straightahead walks in Eulerian graphs[J]. Discrete Math, 2004,281(13):237246.
[5]JIN X A, DONG F M, TAY E G. On graphs determining links with maximal number of components via medial construction[J]. Discrete Appl Math, 2009,157(14):30993110.
[6]ENDO T. The link component number of suspended trees[J]. Graph Combinator, 2010,26(4): 483490.
[7]JIANG L P, JIN X A, DENG K C. Determining the component number of links corresponding to triangular and honeycomb lattices[J]. J Knot Theor Ramif, 2012,21(2):1250018.
[8]林跃峰.交错三角格的链环分支数的几个结论[J].湖南师范大学自然科学学报, 2013, 36(1):1216.
[9]LIN Y F, NOBLE S D, JIN X A, et al. On plane graphs with link component number equal to the nullity[J]. Discrete Appl Math, 2012,160(9):13691375.
[10]汤自凯,侯耀平.恰有两个主特征值的三圈图[J].湖南师范大学自然科学学报, 2011,34(4):712.
[11]袁名焱,罗秋红,汤自凯.由星补刻画的一类广义线图[J].湖南师范大学自然科学学报, 2012,35(1):1320.
[12]JIANG L P, JIN X A. Enumeration of leftright paths of square and triangular lattices on some surfaces [J]. 数学研究, 2011,44(3): 257269.
[13]林跃峰.包含子图K4的无割点次极大图的唯一性[J].数学的实践与认识, 2013, 43(10):156160.
[14]NOBLE S D, WELSH D J A. Knot graphs[J]. J Graph Theor, 2000,34(1):100111.
(编辑沈小玲)
摘要 链环投影图与符号平图有着一一对应关系,这种对应被应用于构造链环图表.研究平图对应的链环分支数,是研究通过平图的中间图构造所对应的链环的基本问题之一.给出了关于交错三角格图的链环分支数的进一步结论.
关键词 交错三角格图; Reidemeister变换; 链环分支数
中图分类号 O157.5 文献标识码 A 文章编号 1000-537(2014)01-086-4
参考文献:
[1]GODSIL C, ROYLE G. Algebraic graph theory[M]. New York: SpringerVerlag, 2001.
[2]JIN X A, DONG F M, TAY E G. Determining the component number of links corresponding to lattices[J]. J Knot Theor Ramif, 2009,18(12):17111726.
[3]SHANK H. The theory of leftright paths[M]. Berlin: SpringerVerlag, 1975.
[4]PISANSKI T, TUCKER T W, ZITNIK A. Straightahead walks in Eulerian graphs[J]. Discrete Math, 2004,281(13):237246.
[5]JIN X A, DONG F M, TAY E G. On graphs determining links with maximal number of components via medial construction[J]. Discrete Appl Math, 2009,157(14):30993110.
[6]ENDO T. The link component number of suspended trees[J]. Graph Combinator, 2010,26(4): 483490.
[7]JIANG L P, JIN X A, DENG K C. Determining the component number of links corresponding to triangular and honeycomb lattices[J]. J Knot Theor Ramif, 2012,21(2):1250018.
[8]林跃峰.交错三角格的链环分支数的几个结论[J].湖南师范大学自然科学学报, 2013, 36(1):1216.
[9]LIN Y F, NOBLE S D, JIN X A, et al. On plane graphs with link component number equal to the nullity[J]. Discrete Appl Math, 2012,160(9):13691375.
[10]汤自凯,侯耀平.恰有两个主特征值的三圈图[J].湖南师范大学自然科学学报, 2011,34(4):712.
[11]袁名焱,罗秋红,汤自凯.由星补刻画的一类广义线图[J].湖南师范大学自然科学学报, 2012,35(1):1320.
[12]JIANG L P, JIN X A. Enumeration of leftright paths of square and triangular lattices on some surfaces [J]. 数学研究, 2011,44(3): 257269.
[13]林跃峰.包含子图K4的无割点次极大图的唯一性[J].数学的实践与认识, 2013, 43(10):156160.
[14]NOBLE S D, WELSH D J A. Knot graphs[J]. J Graph Theor, 2000,34(1):100111.
(编辑沈小玲)
摘要 链环投影图与符号平图有着一一对应关系,这种对应被应用于构造链环图表.研究平图对应的链环分支数,是研究通过平图的中间图构造所对应的链环的基本问题之一.给出了关于交错三角格图的链环分支数的进一步结论.
关键词 交错三角格图; Reidemeister变换; 链环分支数
中图分类号 O157.5 文献标识码 A 文章编号 1000-537(2014)01-086-4
参考文献:
[1]GODSIL C, ROYLE G. Algebraic graph theory[M]. New York: SpringerVerlag, 2001.
[2]JIN X A, DONG F M, TAY E G. Determining the component number of links corresponding to lattices[J]. J Knot Theor Ramif, 2009,18(12):17111726.
[3]SHANK H. The theory of leftright paths[M]. Berlin: SpringerVerlag, 1975.
[4]PISANSKI T, TUCKER T W, ZITNIK A. Straightahead walks in Eulerian graphs[J]. Discrete Math, 2004,281(13):237246.
[5]JIN X A, DONG F M, TAY E G. On graphs determining links with maximal number of components via medial construction[J]. Discrete Appl Math, 2009,157(14):30993110.
[6]ENDO T. The link component number of suspended trees[J]. Graph Combinator, 2010,26(4): 483490.
[7]JIANG L P, JIN X A, DENG K C. Determining the component number of links corresponding to triangular and honeycomb lattices[J]. J Knot Theor Ramif, 2012,21(2):1250018.
[8]林跃峰.交错三角格的链环分支数的几个结论[J].湖南师范大学自然科学学报, 2013, 36(1):1216.
[9]LIN Y F, NOBLE S D, JIN X A, et al. On plane graphs with link component number equal to the nullity[J]. Discrete Appl Math, 2012,160(9):13691375.
[10]汤自凯,侯耀平.恰有两个主特征值的三圈图[J].湖南师范大学自然科学学报, 2011,34(4):712.
[11]袁名焱,罗秋红,汤自凯.由星补刻画的一类广义线图[J].湖南师范大学自然科学学报, 2012,35(1):1320.
[12]JIANG L P, JIN X A. Enumeration of leftright paths of square and triangular lattices on some surfaces [J]. 数学研究, 2011,44(3): 257269.
[13]林跃峰.包含子图K4的无割点次极大图的唯一性[J].数学的实践与认识, 2013, 43(10):156160.
[14]NOBLE S D, WELSH D J A. Knot graphs[J]. J Graph Theor, 2000,34(1):100111.
(编辑沈小玲)