李永东1,2(综述),阿拉坦高勒1(审校)
(1.内蒙古大学生命科学学院,呼和浩特010021;2.内蒙古医科大学第三附属医院心内科,内蒙古包头104010)
心血管疾病是全球性的重大公共卫生问题,全球每年约有1700万人死于心血管疾病。心血管疾病病死率高,影响人类寿命的同时也使生活质量下降。近20年来我国心血管疾病一直处于上升趋势。有许多研究发现,心血管疾病与Rho/Rho激酶信号通路有密切联系。1985年从海兔属动物体内发现Rho基因是Ras基因的一个同源基因,有3个亚型。Rho激酶(Rho associated coiled-coil forming protein serine/threonine kinase,ROCK)是最早发现的Rho效应物。研究者通过大量试验逐渐摸索Rho激酶导致心血管疾病的机制,研发Rho激酶抑制剂,为心血管疾病治疗带来新思路。
Rho激酶包括ROCK1和ROCK2两种,都是位于小鸟苷三磷酸(guanosine triphosphate,GTP)结合蛋白RhoA下游的靶点[1-3]。小 GTP 结合蛋白属于Rho家族,在细胞形成、迁移、增殖及凋亡过程中起调节作用[4]。ROCK包括N端激酶域,中间的卷曲螺旋结构域包括Rho结合结构域;C端是富含半胱氨酸的PH结构域。两种亚型均在哺乳动物中表达。ROCK1也叫做ROKβ 或 p160ROCK,定位在第 18 号染色体[3,5]。ROCK2 也叫做ROKα与 Rho激酶有关,定位在第 2号染色体[6-7]。ROCK1和ROCK2在氨基酸序列中的表达有65%相似,在他们表达的激酶域中有92%相似[8]。ROCK的C端像是N端激酶域的自动调节抑制剂。Rho和ROCK的Rho结合区域以活化的GTP结合形式相互作用,通过C端PH结构域对N端结构域去抑制,增加ROCK活性,导致一个活化“开放”的激酶域产生[9]。这一开放区域可以被花生四烯酸结合到PH结构域或通过胱天蛋白酶3或颗粒酶B C端裂解所诱导[10-13]。这个ROCK的开闭结构与强直性肌营养不良相关的细胞分裂周期蛋白42结合激酶和强直性肌营养不良蛋白激酶活化作用很相似,并且符合ROCK C端结构域过度表达或有缺陷的ROCK的研究,有ROCK负显性突变体作用[14]。ROCK可通过N端转磷酸作用被Rho活化或通过其他小GTP结合蛋白被抑制,如Gem和Rad。虽然ROCK1和ROCK2从早期胚胎到成年小鼠组织内均有表达,但ROCK2信使RNA在心肌细胞和血管组织高表达,而ROCK1在免疫细胞及局限在细胞中心体中大量表达[8,15]。
刺激酪氨酸激酶和G蛋白偶联受体可致Rho活化,上游的ROCKs通过募集和活化Rho鸟苷酸交换因子被激活[6,16]。通过ROCK磷酸化或抑制肌球蛋白轻链磷酸酶,可增加肌球蛋白轻链磷酸化作用,通过肌浆球蛋白和纤维性肌动蛋白作用使细胞收缩。ROCKs通过增加肌动球蛋白收缩和黏着来调控细胞极性和迁移。ROCKs可以通过肌动蛋白细胞骨架膜突起和介导血管内皮细胞渗透性来调节巨噬细胞吞噬活动[17]。ROCK可通过人胰岛素受体底物1磷酸化作用抑制胰岛素信号,解开胰岛素受体对磷酸酰肌醇3-激酶作用[18]。ROCK可以通过增加胰岛素样生长因子诱导人环腺苷酸应答元件结合蛋白磷酸化作用来调节细胞大小[19]。这些可能成为ROCK抑制剂减少心肌肥大的潜在机制。ROCK可能是从许多组织如脂肪细胞、肌细胞中逐渐分化而来。
3.1 Rho激酶与冠状动脉粥样硬化性心脏病 冠状动脉痉挛可引起变异型心绞痛、不稳定型心绞痛、心肌梗死及猝死等。研究发现,冠状动脉痉挛患者心肌缺血Rho/ROCK信号途径激活,心肌RhoA表达上调,ROCK活性增加[20]。ROCK活性增高使激活的人肌球蛋白轻链激酶磷酸化,细胞内Ca2+浓度升高,肌球蛋白轻链磷酸化促使冠状动脉血管平滑肌收缩,导致冠状动脉痉挛。研究发现,当给予Rho激酶抑制剂,抑制Rho/ROCK信号途径活性,可阻止冠状动脉痉挛反应[21]。研究发现,Rho激酶抑制剂可明显增加冠状动脉粥样硬化性心脏病患者的运动耐量,并减轻心绞痛的发作程度[22-24]。相关动物实验发现,猪经长期白细胞介素1β处理引起冠状动脉痉挛后用法舒地尔(fasudil)进行冠状动脉内注射,其可以抑制冠状动脉痉挛[25]。用精氨酸加压素引起大鼠慢性心肌缺血,用fasudil注射后冠状动脉痉挛症状缓解[26]。已有临床试验研究,稳定性心绞痛患者和具有稳定型心绞痛患者病变但具有胸痛症状的患者行冠状动脉造影检查,分别给予fasudil和硝酸甘油治疗,结果发现,对于有粥样硬化狭窄病变的受损血管,fasudil扩冠效果强于硝酸甘油[27]。国外的大量研究发现,Rho激酶抑制剂治疗稳定性心绞痛患者,可以使患者的运动耐量明显得到改善,亦可减轻心绞痛症状使其发作时间缩短,频率变少,程度变轻,还可降低硝酸甘油耐药性[25]。
3.2 Rho激酶与高血压 GTP-RhoA水平上升活化增加可以导致GDP-RhoA/GTP-RhoA的平衡失调,在高血压患者中发现RhoA增加。在高血压小鼠模型中发现RhoA表达增加,并且在自发性高血压大鼠上游ROCK的RNA增加[28-29]。上游的RhoA激活也许包括了一些膜受体和离子通道亦被激活,并且通过三聚体G蛋白和多种RhoA伴侣,如RhoA鸟嘌呤核苷酸交换因子进行信号转导[30]。然而,RhoA/Rho激酶激活可能在导致高血压过程中占有次要地位。血管中Rho激酶活性提高代表血管的正反馈机制开启,增加了正常人的血管阻力[31]。一些其他因素也可致高血压,如肾性高血压大鼠模型中激活肾素血管紧张素系统作用,在自发性高血压大鼠中增加组织中血管紧张素Ⅱ且提高了盐敏感大鼠的内皮素1[32-33]。内皮功能紊乱和一氧化氮低产量,血管舒张能力受损。大鼠平滑肌细胞机械应力改变使RhoA活化[34]。这些与高血压相关的因素都与RhoA活化相关,随后使ROCK活化。在正常人或高血压患者的血管中Ca2+敏感都可激活RhoA。ROCK有助于动脉紧张[6]。
3.3 Rho激酶与心力衰竭 心肌受损、心室重构等因素都可导致心力衰竭。近年来,临床治疗力图限制或逆转心室重构维持心脏收缩功能[35]。尽管药物治疗在进步,但心肌梗死后心力衰竭预后仍不佳。ROCK的两种亚型可被小GTP酶RhoA激活。ROCK在肌动蛋白细胞支架结构中有信号转导作用,可促进平滑肌收缩、基因表达、维持细胞骨架结构、维持细胞凋亡和存活[36]。增加ROCK活性与还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶失调有关,可刺激增加生长因子使心脏肥厚,凋亡细胞增加。在小鼠模型中长期应用非选择性ROCK抑制剂fasudil可降低24 h心肌梗死面积,逆转左心室重构现象,降低左心室功能受限及心肌缺血[9,37]。
3.4 Rho激酶与支架内再狭窄 近年来,支架植入术技术越来越成熟,被广泛运用在冠状动脉及颅内外血管狭窄患者中,这些手术可以有效缓解血管狭窄引起的缺血症状,但术后发生支架内再狭窄的病例依然存在,且其产生机制目前还不清楚,在临床仍是一个挑战[38-39]。目前认为置入的支架对血管壁造成直接损伤,支架还诱导周围血管平滑肌分化、迁移、增殖,相关细胞因子和生长因子激活产生炎性反应,最终引起血管新生内膜形成而发生支架内再狭窄[40-41]。支架内再狭窄的主要机制是内膜增生、血栓形成。支架内血栓形成可以促进内膜增生[42]。Rho/Rho激酶能够调节细胞功能,促进新生内膜形成、缩窄性重构、血栓形成、肌动蛋白骨架重构、细胞黏附和转移、细胞因子基因表达及细胞周期调控。Matsumoto等[43]试验证实,支架置入直接刺激动脉血管壁引起Rho激酶活化,而Rho激酶会通过上述机制导致支架内再狭窄。Rho激酶抑制剂fasudil在细胞水平可以调节细胞增殖、迁移、黏附、骨架重构、炎性细胞运动等,在分子基因水平调节炎症、血栓形成、氧化、纤维化等。临床应用证实,fasudil可以用于心绞痛、高血压、冠状动脉痉挛、冠状动脉再通术后再狭窄和动脉硬化等,且有较好的治疗作用[44]。
大量研究证明了Rho/Rho激酶与多种心血管疾病有密切的联系。Rho激酶表达上调会促进许多心血管疾病的发生及发展。目前有许多动物试验证明Rho激酶抑制剂可以改善和治疗心血管疾病,可以减轻临床症状,且优于现在常用的一些心血管疾病治疗药物。截至目前为止,fasudil是唯一上市应用于临床上的Rho激酶抑制剂。现在仍有许多科研人员在进行Rho激酶抑制剂的试验及研发工作。相信在未来,可以更加充分地认识Rho激酶表达上调导致心血管疾病的机制,并将Rho激酶抑制剂很好地应用于临床。
[1]Leung T,Manser E,Tan L,et al.A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes[J].J Biol Chem,1995,270(49):29051-29054.
[2]Amano M,Nakayama M,Kaibuchi K.Rho-kinase/ROCK:a key regulator of the cytoskeleton and cell polarity[J].Cytoskeleton(Hoboken),2010,67(9):545-554.
[3]Loirand G,Guérin P,Pacaud P.Rho kinases in cardiovascular physiology and Pathophysiology[J].Circ Res,2006,98(3):322-334.
[4]Jaffe AB,Hall A.Rho GTPases:biochemistry and biology[J].Annu Rev Cell Dev Biol,2005,21:247-269.
[5]Whitlock NA,Harrison B,Mixon T,et al.Decreased intraocular pressure in mice following either pharmacological or genetic inhibition of ROCK[J].J Ocul Pharmacol Ther,2009,25(3):187-194.
[6]Dong M,Yan BP,Liao JK,et al.Rho-kinase inhibition:a novel therapeutic target for the treatment of cardiovascular diseases[J].Drug Discovery Today,2010,15:622-629.
[7]Boerma M,Fu Q,Wang J,et al.Comparative gene expression profiling in three primary human cell lines after treatment with a novel inhibitor of rho-kinase or atorvastatin[J].Blood Coagul Fibrinolysis,2008,19(7):709-718.
[8]Riento K,Ridley AJ.Rocks:multifunctional kinases in cell behaviour[J].Nat Rev Mol Cell Biol,2003,4(6):446-456.
[9]Bryan BA,Dennstedt E,Mitchell DC,et al.RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis[J].FASEB J,2010,24(9):3186-3195.
[10]Burley DS,Ferdinandy P,Baxter GF.Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion:opportunities and obstacles for survival signaling[J].Br J Pharmacol,2007,152(6):855-869.
[11]Sebbagh M,Renvoizé C,Hamelin J,et al.Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing[J].Nat Cell Biol,2001,3(4):346-352.
[12]Coleman ML,Sahai EA,Yeo M,et al.Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I[J].Nat Cell Biol,2001,3(4):339-345.
[13]Sebbagh M,Hamelin J,Bertoglio J,et al.Direct cleavage of ROCKⅡby granzyme B induces target cell membrane blebbing in a caspase-independent manner[J].J Exp Med,2005,201(3):465-471.
[14]Chen XQ,Tan I,Ng CH,et al.Characterization of RhoA-binding kinase ROKalpha implication of the pleckstrin homology domain in ROKalpha function using region-specific antibodies[J].J Biol Chem,2002,277(15):12680-12688.
[15]Chevrier V,Piel M,Collomb N,et al.The Rho-associated protein kinase p160ROCK is required for centrosome positioning[J].J Cell Biol,2002,157(5):807-817.
[16]Wang Y,Zheng XR,Riddick N,et al.ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells[J].Circ Res,2009,104(4):531-540.
[17]Kerem A,Yin J,Kaestle SM,et al.Lung endothelial dysfunction in congestive heart failure:role of impaired Ca2+signaling and cytoskeletal reorganization[J].Circ Res,2010,106(6):1103-1116.
[18]Noguchi M,Hosoda K,Fujikura J,et al.Genetic and pharmacological inhibition of rho-associated kinase II enhances adipogenesis[J].J Biol Chem,2007,282(40):29574-29583.
[19]Haudek SB,Gupta D,Dewald O,et al.Rho-kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation[J].Cardiovasc Res,2009,83(3):511-518.
[20]Bao W,Hu E,Tao L,et al.Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury[J].Cardiovasc Res,2004,61(3):548-558.
[21]Kandabashi T,Shimokawa H,Mukai Y,et al.Involvement of rhokinase in agonists-induced contractions of arteriosclerotic human arteries[J].Arterioscler Thromb Vasc Biol,2002,22(2):243-248.
[22]Mohri M,Shimokawa H,Hirakawa Y,et al.Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm[J].J Am Coll Cardiol,2003,41(1):15-19.
[23]Small EM,Thatcher JE,Sutherland LB,et al.Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction[J].Circ Res,2010,107(2):294-304.
[24]Vicari RM,Chaitman B,Keefe D,et al.Efficacy and safety of fasudil in patients with stable angina:a double-blind,place-bocontrolled,phase 2 trial[J].J Am Coll Cardiol,2005,46(10):1803-1811.
[25]Kim MS,Dean LS.In-Stent restenosis[J].Cardiovasc Ther,2011,29(3):190-198.
[26]Otsuka T,Ibuki C,Suzuki T,et al.Vasodilatory effect of subsequent administration of fasudil,a rho-kinase inhibitor,surpasses that of nitroglycerin at the concentric coronary stenosis in patients with stable angina pectoris[J].Circ J,2006,70(4):402-408.
[27]Doe C,Bentley R,Behm DJ,et al.Novel Rho kinase inhibitors with anti-inflammatory and vasodilatory activities[J].J Pharmacol Exp Ther,2006,320(1):89-98.
[28]Seasholtz TM,Zhang T,Morissette MR,et al.Increased expression and activity of RhoA are associated with increased DNA synthesis and reduced p27(Kip1)expression in the vasculature of hypertensive rats[J].Circ Res,2001,89(6):488-495.
[29]Mukai Y,Shimokawa H,Matoba T,et al.Involvement of Rhokinase in hypertensive vascular disease:a novel therapeutic target in hypertension[J].FASEB J,2001,15(6):1062-1064.
[30]Loirand G,Pacaud P.The role of rho protein signaling in hypertension[J].Nat Rev Cardiol,2010,7(11):637-647.
[31]Chrissobolis S,Sobey CG.Evidence that Rho-kinase activity contributes to cereveral vascular tone in vivo and is enhanced during chronic hypertension:comparison with protein kinase C[J].Cir Res,2001,88(8):774-779.
[32]Fukui S,Fukumoto Y,Suzuki J,et al.Long-term inhibition of rhokinase ameliorates diastolic heart failure in hypertensive rats[J].J Cardiovasc Pharmacol,2008,51(3):317-326.
[33]Nunes KP,Rigsby CS,Webb RC.RhoA/rho-kinase and vascular diseases:what is the link?[J].Cell Mol Life Sci,2010,67(22):3823-3836.
[34]Noma K,Oyama N,Liao JK.Physiological role of ROCKs in the cardiovascular system[J].Am J Physiol Cell Physiol,2006,290(3):c661-c668.
[35]Del Re DP,Miyamoto S,Brown JH.RhoA/rho-kinase upregulates Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis[J].J Biol Chem,2007,282(11):8069-8078.
[36]Del Re DP,Miyamoto S,Brown JH.Focal adhesion kinase as a rhoA-activable signaling scaffoldmediating Akt activation and cardiomyocyte protection[J].J Biol Chem,2008,283(51):35622-35629.
[37]Xu Y,Ding H,Peng J,et al.Association between polymorphisms of cyp2j2 and ephx2 genes and risk of coronary artery disease[J].Pharmacogenet Genomics,2011,21(8):489-494.
[38]Fields JD,Liu KC,Barnwell SL,et al.Indications and applications of arterial stents for stroke prevention in atherosclerotic intracranial stenosis[J].Curr Cardiol Rep,2010,12(1):20-28.
[39]Zhao Q,Wang L,Yang W,et al.Interactions among genetic variants from contractile pathway of vascular smooth muscle cell in essential hypertension susceptibility of Chinese han population[J].Pharmacogenet Genomics,2008,18(6):459-466.
[40]Huang Y,Salu K,Wang L,et al.Use of a tacro limus-eluting stent to inhibit neointimal hyperplasia in a porcine cornary model[J].J Invasive Cardiol,2005,17(3):142-148.
[41]Zargham R.Preventing restenosis after angioplasty:amultistage approach[J].Clin Sci(Lond),2008,114(4):257-264.
[42]Huang Y,Venkatraman SS,Boey FY,et al.In vitro and in vivo performance of a dual drug-eluting setent(DDES)[J].Biomaterials,2010,31(15):4382-4391.
[43]Matsumoto Y,Uwatoku T,Oi K,et al.Long-term inhibition of Rhokinase suppresses neointimal formation after stent implantation in porcine coronary arteries:involvement of multiple mechanisms[J].Arterioscler Thromb Vasc Biol,2004,24(1):181-186.
[44]Phrommintikul A,Tran L,Kompa A,et al.Effects of a rho-kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction[J].Am J Physiol Heart Circ Physiol,2008,294(4):h1804-h1814.