[摘 要] 本文以“解决两步计算的实际问题”为案例,通过例题的教学与再现,让学生重点了解题目的解题思路;还借助例题的拓展与运用,学生在“变”中寻“不变”,在“不变”中觅“变”,培养学生灵活面对具体问题的能力.
[关键词] 变;不变
问题解决是《数学课程标准2011版》总目标的四个方面之一,使学生在学习的同时学会综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力. 在学生不断的交流体验中不断反思、不断总结、不断提升自我. 现结合“解决两步计算的实际问题”的实际教学探讨解决问题过程中“变”与“不变”的观点,体现解决问题的多样性,发展学生的创新意识.
教学目标
1. 让学生学会解决与“倍”或“差”有关的两步计算实际问题,并利用例题中学到的分析与解决问题的思维方法灵活地解决问题.
2. 使学生在画线段图的过程中体会数量间的联系,形成思路,自己提出解决问题的方法. 利用线段图启示算法,培养学生理解问题、分析问题的能力.
教学重点
“倍”或“差”的两步计算实际问题.
教学难点
利用线段图体会数量间的联系.
教学过程
1. 创设情境,引入新课
(1)复习简单的实际问题
谈话:同学们,今天张老师来到了安定小学,认识了这么多新同学,我很开心. 让老师来看看聪明的同学们以前学习的知识掌握得是否牢固?(出示复习题)
提问:哪位同学能说一说从图中你获得了什么信息?谁会列式?
【设计说明:复习是为了调动学生的已有知识基础,同时渗透数形结合思想,为本节课的教学做好铺垫】
过渡:这是我们以前学过的一步计算的比较简单的实际问题,今天老师要在此基础上增加难度,把它变成两步计算的实际问题,同学们有没有信心解决两步计算的实际问题?(有)(板书:解决两步计算的实际问题)
(2)创设情境
谈话:爸爸的生日快到了,妈妈和小红想给爸爸买一套衣服作为生日礼物. 来到商场,小红帮爸爸挑了这样一套衣服,你们看,就是这件上衣和这条裤子. 从图中你还捕捉到哪些信息?(说的同时展示图片)
【设计说明:这样的谈话情境源于学生的生活实际,充分利用现实的教学资源,让学生从图中了解到“一件”和“一套”的区别,同时为例题问题的提出埋下伏笔】
2. 活动引路,解决问题
(1)解决几倍求和的实际问题
启发:老师用一条线段表示裤子的28元,你能用线段图表示上衣的价格吗?请你先画一画,再在小组内说一说.
活动一:巧画线段
①画一画:裤子
上衣
②说一说:组内说说你是怎样画的?
学生活动后,让学生说一说画法.
学生画图后,启发:图中的条件我们已经用线段图表示出来了,我们要求“买一套衣服要多少钱?”,这里的一套表示什么呢?
③算一算:请列式计算买一套衣服要多少钱?看谁算的方法多.
我先算_______,再算________.
小结:要求“买一套衣服要多少钱”,可以用两种方法来解决,第一种是先求出上衣的价钱,再把上衣的价钱和裤子的价格加起来就是一套衣服的价钱. 第二种方法是先算出一套衣服有几个28元,然后再求出一套的价钱. 你喜欢哪一种方法?
同学们对哪一种方法比较熟练,就用哪一种方法.
【设计说明:这样的设计遵循了学生的思维过程,有利于帮助学生寻找解决问题的路径,体会成功的过程,同时通过自主探索、自由发言、相互评价,使学生懂得尊重别人、学会倾听、合作学习的重要性】
(2)解决几倍求相差的实际问题
要求:根据一条裤子28元,一件上衣是裤子的3倍,这两个条件,同桌两人商量商量,再提出一个两步计算的实际问题,并在线段图中标出你所提的问题.
活动二:举一反三
①我来挑战:一件上衣比一条裤子贵多少元?
②我的思考:……
引导:小组内说一说上面的两题有什么相同的地方?有什么不同的地方?
小结:改变问题后解法不同,但不管怎样改,我们都可以通过画线段图表示出条件与条件的关系,以及条件与问题的关系,然后根据线段图分析题意,确定先求什么,再求什么,每一步怎样计算.
【设计说明:通过异同点的比较,能让学生掌握解决两步计算的实际问题的基本方法,让学生在解决问题的过程中以“不变”应“万变”】
(3)巩固练习:想想做做第1题
①要求:请大家看线段图说数量关系,再在活动单上完成想想做做第1题.
(出示第1题)提问:谁来说一说一共多少米?先求什么?再求什么?
②要求:请大家再提出一个两步计算的实际问题.
学生回答后出示:红彩条比蓝彩条多多少米?(蓝彩条比红彩条少多少米?)
方法一 红:5×4=20(米) 多(或少):20-5=15(米)
方法二 多(或少)几个5米:4-1=3 多(或少):3×5=15(米)
(4)解决相差求和的实际问题(课件出示想想做做第2题)
过渡:再来看这幅图,组内说一说图意,并把算式写在活动单上.
小结:方法有两种,你可以选择你最能理解、最喜欢的方法去解决实际问题.
(5)检测反馈
刚才我们学习了例题的和倍问题、差倍问题、相差求和问题,看看大家能不能熟练掌握. 请完成检测反馈. (出示想想做做第3题)
①我们一起来校对,组内轮流批阅. 谁来说一说想想做做第3题.
②全对的请举手,有错误的请订正.
(出示想想做做第4题)引导:你是怎样求第4题的?请哪位同学把作业拿到前面的展示台上来说一说你的思考过程和列式.
(6)拓展应用
出示:小猴和大猴一起去采桃,小猴采了8个桃,___________. 大猴和小猴一共采了多少个桃?
【设计说明:通过巩固题、变式题、开放题的设计,体现“从扶到放,逐步提升”的作业设计原则,让学生独自经历观察、分析、解决问题的过程,以提高学生应用解题方法的能力. 同时,学生能灵活设计“和倍、差倍、相差求和”的实际问题,并能从解决问题中巩固方法. 通过练习,既可以让学生达到巩固新知、反馈纠错的目的,又能提高学生解决问题的能力】
3. 小结全课,分享收获
这节课我们一起学习了两步计算的实际问题,你们觉得有什么收获?你有什么不明白的地方?
小结:实际上,两步计算的实际问题只不过是在一步计算的基础上添加了一步. 我们可以“以不变应万变”——紧扣关键条件,求出中间问题;抓住数量关系,解决实际问题. 另外,有了线段图的帮助,这些题目肯定难不倒我们班的同学,大家学得开心吗?学得快乐吗?
课件出示:老师愿全体同学每节数学课都学得这么开心,这么快乐!
让我们一起运用数学、享受数学吧!
【设计说明:这样开放的小结,既使学生实现了自我反馈,又有利于提高学生语言表达能力. 同时让学生进一步固化解决两步计算的实际问题的“以不变应万变”基本方法——紧扣关键条件,求出中间问题;抓住数量关系,解决实际问题. “让孩子快乐享受每一节数学课”是我的魅力课堂的理想追求】
教学反思
《潜伏》里有句非常经典的台词:有一种胜利叫撤退,有一种失败叫占领. 也正如一首歌中唱到“有一种爱叫做放手”,用这句话来描述我们的“活动导学”数学课堂真是再恰当不过了. 回眸往昔,教师霸占整个课堂,总是不放心我们的孩子,把知识嚼碎了喂给孩子,唯恐孩子自己没有咀嚼能力,长此以往,我们的孩子就适应了等待熟食的生活,失去了自己觅食的能力,没有个性、没有灵气、不会思考、无力变通、表达不畅. 我们不善于“退”,更不舍得“退”,我们习惯占领,更善于强攻,结果必然适得其反. 教师要有深情“潜伏”、倾情“暗算”、适时“亮剑”的大智慧. 只有迅速从课堂中撤退出来,把课堂“放手”真正还给孩子,给他们充足的时间和空间,让思维快乐起舞,让语言放声高歌,还给他们一个宽大的舞台,我们才可以收获无数的精彩.
本课例遵循“以学生为主人,以活动为主体,激发学习内驱力,发展学生素质”的活动单导学理念而设计,自主合作探究在本课例中落地生根. 整个课例流程奏响三部曲,前后一气呵成. 第一部:创设情境,引入新课. 通过对旧知的再现,让学生勾起往日的回忆,再通过生日情境的创设,自然过渡到新知的学习中来. 第二部:活动引路,解决问题. 共设计了三个层次的活动,难度逐一递增,首先是例题的自学,通过“画一画”“说一说”“算一算”让学生在活动方案的引领下水到渠成地自学完成例题. 然后是例题的再现,让学生举一反三,熟练运用所学知识. 最后是例题的巩固,老师精心设计一组习题,有选选填填,也有解决问题. 通过三个层次的活动,让学生从“变”寻到“不变”. 第三部:当堂检测,拓展思维. 通过巩固题、变式题、开放题的设计,使学生从“不变”中觅到“变”,让学生独自经历观察、分析、解决问题的过程,以提高学生应用解题方法的能力,这样的设计充分体现了“从扶到放,逐步提升”的作业设计原则. 最后,有了课堂的亲身感悟与经历,学生解决问题没有障碍,轻松愉快,和谐的课堂缔造和谐的人格.
“让孩子快乐享受每一节数学课”——我的魅力数学课堂的朴素追求!