詹求强,刘 静,赵宇翔,张 欣
(华南师范大学华南先进光电子研究院光及电磁波研究中心,广东广州 510006)
随着生物医学的快速发展,光学生物成像技术在其中发挥的作用越来越重要,而荧光成像因为其高分辨率、灵敏、快速的特点得到了非常广泛的研究和应用。目前的荧光标记物主要是有机染料荧光团、量子点(quantum dot,QD)、金属纳米颗粒、上转换纳米颗粒(upconversion nanoparticles,UCNPs)、碳纳米颗粒等。这其中,有机染料荧光团使用的最早也最广泛,但其光稳定性差,不能长时间连续观察,且吸收和发光谱线宽;半导体量子点光稳定性好,辐射谱线窄,但其可能存在的生物毒性和化学不稳定性使其不能进一步在生物荧光成像领域得到应用。
UCNPs作为一种近期快速发展的热门荧光标记物,在某些方面比有机染料荧光团和量子点有明显的优势。图1给出了UCNPs和QD这两种材料在生物应用上论文数量的比较,两条曲线有着相似的走向,可以看出UCNPs的热门程度不亚于QD,上转换文章数量的快速增长正说明了这一材料的巨大潜力。UCNPs主要指掺杂了稀土(rare earth,RE)元素后能够受两个或多个低频光子激发而辐射出一个高频光子的纳米级大小的粒子,它具有光稳定性高、发射光谱谱线窄、荧光寿命长、化学稳定性高等优点。而且上转换材料可以完全消除自发的背景荧光,能获得超高的成像对比度。同时,由于是多光子发光过程,它还有着非常好的成像分辨率。在近红外光(near infrared,NIR)激发下UCNPs可发射出近红外光,具有较好的光学穿透深度,并且对生物组织也几乎没有损伤。以上这些优势都使UCNPs在生物光子学领域有巨大的应用可能。
上转换发光纳米材料是一种在纳米晶体基质中掺杂RE离子(以Er3+,Tm3+,Ho3+和Yb3+为主)的复合纳米材料,RE离子普遍具有多能级结构(图2),在这几种RE离子中,Yb3+充当敏化离子(sensitizer)角色,而其他的RE离子充当活化离子(activator)角色。整个上转换发光过程包括敏化离子-活化离子之间的能量传递、敏化离子-敏化离子和激活离子-激活离子之间的能量转移(图2)。在这些能量转移过程中会有双光子和三光子过程,分别激发出绿光、红光和蓝光。上转换的发光波长几乎覆盖了紫外、可见、以及红外光区的光谱范围[1,2]。
图1 近年来发表有关QD和UCNPs在生物应用研究中的论文数量比较Fig.1 A quantitative comparison of research activity in bio-applications of QD and UCNPs,measured as number of research articles per year
关于多种RE离子间能量转移传递上转换发光的过程机制,可以分为激发态吸收(excited state absorption,ESA)、能量传递上转换(energy transfer upconversion,ETU)、交叉弛豫(cross relaxation,CR)、合作敏化上转换(cooperative sensitization upconversion,CSU)和光子雪崩(photon avalanche,PA)等五种[2-4]。上转换发光纳米材料的发光机制主要是基于能量传递上转换过程,其他几个能量传递过程也存在,但发生几率很小。
图2 敏化离子Yb3+与活化离子Er3+,Tm3+的能级结构以及他们之间通过能量转移实现上转换发光过程的能级跃迁机制2Fig.2 Energy level structure and proposed UC mechanisms of the Yb3+,Er3+/Tm3+co-doped UCNPs
图3 三种不同UCNPs:NaYbF4:Yb3+/Ho3+(绿),NaFbF4:Yb3+/Er3+(红),NaFbF4:Yb3+/Tm3+(蓝)的发光光谱和发光照片5Fig.3 Photoluminescence spectra of NaYbF4:Yb3+/Er3+(red emission),NaYbF4:Yb3+/Ho3+(green emission),and NaYbF4:Yb3+/Tm3+(blue emission).The insets show the visible photoluminescence imaging of the UCNP colloidal suspension
与传统的荧光标记物不同,UCNPs可以用近红外光激发而不是紫外光,从而明显的减小了生物样品的光致损伤,同时增大了激发光的穿透深度。这种上转换激发所采用的反斯托克斯机制可以去除自发荧光进行探测,从而带来非常好的信噪比并且改善探测器的灵敏度。同时上转换过程存在真实的直接能级,相比普通的双光子发光现象有着更高的效率,在低功率密度照射下可以产生生物研究中所需要的稳定适中的光强。UCNPs可以用小巧、廉价、低功率的近红外激光器激发,重要的是在连续照射下不会产生闪烁、光漂白和光化学降解[6-8]。UCNPs的另一个优势是它包含窄而清晰的发射峰(半高线宽,FWHM<12 nm),具有较长的荧光寿命(μs~ ms)[9,10]。
上转换纳米粒子一般由无机主基质和掺杂在主基质晶格中的镧系离子组成,具体可参考图5,掺杂的离子又分为敏化剂和活化剂。
研究上转换所用到的主基质很多,理想的主基质有低的晶格声子能量,这样将使非辐射损失最小化,同时主基质的晶格也要和掺杂离子相匹配以达到最好的掺杂效果。本文主要介绍的主基质为NaYF4。
图4 UCNPs没有光致漂白和光闪烁现象:(a)单UCNPs在长时间探测后有光稳定性;(b)UCNPs的时间分辨辐射;(c)分别用405,543和980 nm连续激光在1.6,0.13和19 mW下同时激发得到的焦面成像[6-8]Fig.4 Nonbleaching and nonblinking behavior of UCNPs:(a)Photostability of a single UCNP under longtime monitoring;(b)Time-resolved emission of UCNP,suggesting no on/off behavior;(c)Simultaneous excitations was provided by CW lasers at 405,543,and 980 nm with powers of approximately 1.6,0.13,and 19 mW in the focal plane,respectively
理论上大部分的RE离子都可以进行上转换发射,但在低强度激发功率下,只有少数的RE离子可以进行上转换发射,如Er3+,Ho3+和Tm3+用来做为活化剂。它们有着阶梯状的能级结构,可以被近红外光激发产生上转换发光。活化剂的含量都相对较低(一般<2 mol%),这样以减小交叉弛豫的能量损失。
为了提高上转换发光效率并且使其在在近红外区有足够大的吸收截面,通常我们还需要一个敏化剂和活化剂共同掺杂。Yb3+相比于其他的镧系元素离子,在900-1000 nm附近有一个较大的吸收截面,它作为敏化剂经常与Er3+,Ho3+和Tm3+共同掺杂来提高上转换发光效率(图2)。
合适的尺寸和均一的形状是上转换纳米粒子应用于生物成像的前提。目前为止,有报道过多种合成高质量UCNPs的方法,包括有共沉淀法[12]、水热合成法[13]、热分解法5、溶胶-凝胶法以及微乳液的合成方法。而在这些方法中,水热合成法和热分解法是最为常用来合成均一的、疏水性的纳米粒子的方法。本综述也主要介绍这两个方法。
图5 图示为晶体主基质和包含有镧系离子的上转换纳米粒子示意图(蓝色及白色为主基质分子,红色为掺杂的离子)11Fig.5 Schematic illustration of UC nanoparticles composed of a crystalline host and lanthanide dopant ions embedded in the host lattice
2.2.1 水热合成法 用水热合成法合成上转换纳米粒子可以很好的控制纳米粒子的大小和形状,反应是在密闭的高温高压环境中进行的(如图6)。一般在溶液中混合RE元素前驱体和氟化物前驱体,然后密闭在高压容器中加热反应。经常用到的RE元素前驱体为硝酸盐、氯化物和氧化物,而较典型的氟化物前驱体为HF,NH4F,NaF和 NH4HF2,乙二胺四乙酸(EDTA)、溴化十六烷基三甲基铵硝酸盐(CTAB)、油酸(OA)和柠檬酸三钠盐(TSC)为经常用到的表面活性剂。Li[13-16]等人报道了一种简单的相转变及分离的方法(LSS),用这种LSS方法成功合成了不同主基质、晶体结构、大小和形状的纳米粒子,如,BaY2F8,Ba2YF7,Ba2YbF7。Zhang[20]等人报道了一种新颖的容易使用的水热合成法合成纯的六方晶型NaYF4:Yb,Er/Tm纳米粒子,此方法合成的纳米粒子形状可控而且上转换发光强。
2.2.2 热分解法 在热分解过程中,三氟乙酸盐被用作前驱体来分解得到相应的金属氟化物。Yan[21,22]等人创新性地提出了用 OA/OM/1-十八烯(ODE)与三氟乙酸盐共热的方法,以达到热分解法需要的高温(300℃),并在反应中调节前驱体的比例、反应的温度和时间、协调溶剂的属性,来控制纳米晶体的相、形态、大小,从而提高上转换发光效率。但在热反应的过程中不可避免地会产生一些有毒的副产物,如三氟乙酸醋酸酐(CF3CO)2O,三氟乙酰氟CF3CF2COF,羰基二氟化物 COF2和四氟乙烯C2F4,Wei[23]等人报道了一个更好的热分解方法,通过RE-油酸盐和NaF混合作为前驱体进行热分解得到α-和β-NaYF4UCNPs。Chow[24]等人提出油胺(OM)是唯一能使UCNPs从四方晶型转变为六方晶型的溶剂,Cohen[25]等人用以上控制条件及晶相的方法合成了低于10 nm的六方晶型的UCNPs。
图6 UCNPs水热合成法的步骤示意图Fig.6 The schematic diagram of hydro(solvo)thermal method of UCNPs
通过以上方法合成的UCNPs一般为疏水性的,而要用于标记生物发光,则需要通过表面修饰使其转变为亲水性的。到目前为止报道的方法很多,主要有配体交换、配体去除、静电层层自装法、配体氧化法、层层叠加法、聚合物包覆法、硅烷化及主客体相互作用法(表1)。
对于上转换材料而言,设计一个符合要求的晶体结构是提高发光效率的关键性因素,这就需要考虑如何控制材料的晶相、粒度及离子掺杂等因素。
3.1.1 主基质优化 在热分解和水热法合成过程中,立方相的NaYF4首先形成,当能量达到一定值时,就能克服晶体相变所需的自由能,立方相就能向六方相转变[22,25]。(1)延长时间有助于克服立方相的 NaYF4向六方相转变的自由能[22,52]。如图 7 所示,在我们的试验中,Gd3+掺杂的NaYF4:20%Yb3+/30%Gd3+/2%Er3+纳米颗粒半小时后颗粒呈不规则球状,一小时后样品呈非常规则的的六方相。(2)调控Na+、RE3+及Y-之间的摩尔比例。在大多数情况下,六方相的NaYF4不如立方相的NaYF4稳定,采用高的 Na+/RE3+和 F-/RE3+比例有利于六方相的NaYF4形成[22,53-55]。(3)配体调制相变。油胺可以调制NaYF4的晶相由立方相向六方相转变[24,25]。
表1 UCNPs的表面修饰方法Tab.1 Methods of surface functionalization of hydrophobic UCNPs
图7 利用溶胶-凝胶法分别烘烤(a)半小时、(b)1小时后得到的NaYF4:20%Yb3+/30%Gd3+/2%Er3+的透射电镜图Fig.7 TEM images of using sol-gel method after baking NaYF4:20%Yb3+/30%Gd3+/2%Er3+for(a)0.5 h,(b)1 h
UCNPs的粒径越小,比表面积就越大,意味着更多的缺陷和配体将存在于表面,会降低上转换发光效率。同时,由于颗粒大小会极大影响生物组织对颗粒的吸收及在生物组织中的分布,因此上转换纳米材料颗粒不能太大,否则就不适用于生物成像,故合成足够小的纳米颗粒的同时保持足够的发光亮度是我们面临的一个挑战。研究者们通过改变表面活性剂(油酸和油胺)的浓度、Y3+/F-比例以及反应温度来调控合成直径从4.5 nm到15 nm大小的蛋白质尺寸的六方相NaYF4[25],成功合成了小颗粒高亮度的UCNPs,这一进展会拓展和深化UCNPs的生物应用,特别是单分子成像中。
3.1.2 离子掺杂优化 如图8所示,上转换发光材料的发光效率和掺杂RE离子的种类、RE离子间的摩尔比例有很大关系,发光强度最大的为Y3+:Yb3+:Tm3+(Er3+)=78:20:2。Li+掺杂到氧化物或氟化物上转换纳米材料中能增强上转换发光[56-61],Ho3+掺杂离子能增强Tm3+的近红外上转换发光[62]。
3.1.3 表面包覆保护壳层优化 在上转换纳米发光材料表面包覆上保护壳层,可以减少晶体缺陷、保护光学活性的离子,从而减少非辐射能量损失[63]。比较无壳层的BaGdF5:Yb3+/Er3+和包覆了活性壳层的BaGdF5:Yb3+/Er3+发光强度,发现包覆了活性壳层的纳米颗粒的发光强度较之无壳的有几百倍的增加[64]。此外,将掺杂离子用一种层状结构隔离,能抑制焠灭效应,有望使上转换发光效率得到增强[44,65,66]。
图8 水热法合成的5个不同样品的上转换发光光谱及其对应的圆薄片样品图Fig.8 Hydro(solvo)thermal method synthesis of 5 different samples of upconversion luminescence spectrum and its corresponding circular wafer sample diagram
众所周知,金属结构独特的表面等离子特性可以用来增强来自临近荧光团(有机染料和无机量子点)的荧光[67,68]。同样的,强局部场下的表面等离子共振也能用来增强上转换辐射效率。Zhang[69]等人和Sudheendra[70]等人成功的将纳米金颗粒吸附在UCNPs表面实现了上转换辐射调制[71,72]。一种特制980 nm辐射金等离子表面对能明显增强来自纳米线层的从近红外到可见光的上转换发光[73]。对于有掺杂的上转换纳米颗粒和金属纳米颗粒的优化设计来说,单纳米颗粒表面等离子增强机理的研究是很重要的。然而,使用金属纳米颗粒增强上转换辐射进行生物探测仍面临很大的挑战,如复杂的实验过程和苛刻的实验条件。
目前利用表面等离子对辐射的金属增强上转换主要集中在玻璃复合材料和薄膜上,科学家们将银或金的纳米颗粒附着在UCNPs上可以增强上转换强度。Yan[74]等人第一次通过一种直接集合的方法将六方形NaYF4:Yb,Er纳米颗粒和银纳米线配对观察到了增强的上转换辐射。红光辐射(650 nm)比绿光辐射(550 nm)增强因数更大,并且可以使用聚集了银颗粒的银岛得到进一步的增强。Schietinger[75]等人用一个光学和原子力显微镜相结合的设备观察并控制单 NaYF4:Yb,Er纳米颗粒与金纳米球(60 nm)的距离,发现绿光辐射的增强是4.8,而红光辐射下是2.7。Kennedy[72]等人发现了一种新型的光子材料,它是一种有非定型金壳层(4-8 nm)的立方NaYF4:Yb,Er/Tm纳米晶体。在这种有等离子金壳层的NaYF4:Yb,Tm纳米颗粒下观察到的从近红外到可见光的上转换增强达到了8。Duan[71]等人通过六方形NaYF4:Yb,Tm和金纳米颗粒的等离子接触调制了上转换辐射,并且在452-476 nm的范围内得到了超过150%的辐射强度增强,而647 nm处只有50%左右的增强。最近,Qin[76]等人通过将金纳米颗粒(10 nm)吸附在NaYF4:Yb,Tm表面,观察到对于这种纳米复合材料上转换辐射在波长291 nm和345 nm分别增强了73.7和109.0。
在它的所有应用中,激发光都是采用的975 nm附近(如980 nm)的连续激光,但生物体内的主要成分--水在这个波长附近吸收非常的强,这样就降低了成像深度并造成了明显的热效应[77]。因此,对于上转换效率在波长方面的优化也有它的必要性,2011年 Zhan[27]等人在国际上首次提出了915 nm光作为上转换材料的新激发光源波长,在生物成像中具有更深的成像深度和更低的热损伤。使用同样强度的500 mWcm-2的915 nm和980 nm连续脉冲激光照射3 min后,温度分别达到32.2℃和45℃。
图9 优化上转换成像中的激发模式实现低热无损、深度组织成像Fig.9 The optimization of conversion imaging excitation mode to realize low thermal condition,depth tissue imaging
UCNPs生物成像由于具有无自发荧光、大的反斯托克斯位移、窄的发射峰、高耐光漂白、无光闪烁、探测深度大以及高的空间分辨率等优良的光学特性,因此近几年来很多人致力于UCNPs的生物光子学应用。目前在细胞成像、动物成像、生物传感、漫射光成像、光动力治疗(PDT)、多模式成像(MRI/PET)等方面有众多应用。
图10 UCNPs的生物应用Fig.10 The biological application of UCNPs
近几年来,随着上转换纳米粒子性能的改进,基于UCNPs的显微技术被广泛应用于高分辨和高对比的离体细胞的成像。
在无抗体标记的细胞中,用UCNPs吸附在细胞膜上或被细胞内吞来进行成像。最近,Jin[78]等人制备了三种类型的聚合物包覆的UCNPs,发现了相比于中性和带负电荷的聚合物,用带正电荷的PEI包覆的UCNPs可以增强细胞对UCNPs的摄取能力。2008年 Nyk[79]等人成功将 MSA-UCNPs应用到标记Panc 1细胞进行高对比成像(图11)。
相比于无抗体标记的细胞成像,有抗体标记的成像会有更多优点,尤其是在肿瘤细胞靶向成像中有更广泛的应用。表面功能化的UCNPs通过生物分子识别与癌细胞特异性相结合,2009年 Wang[80]等人提出用anti-CEA8于UCNPs结合来进行细胞成像(图12)。Zhan[27]等人最近报道了一系列对比可控实验,说明了将NaYF4:Yb3+/Er(Ho)3+与anti-CEA8的抗体相结合,可以特异性地与Hela癌细胞膜结合,从而进行成像。
UCNPs的快速发展使得其实现了在活体中的成像,在早期的研究中,包括皮下注射和UCNPs在生物中的分布成像。Salthouse等[81]人研究了在老鼠的尾巴静脉注射UCNPs后的积累,结果表明PEG-UCNPs没有首先靶向积累在小鼠的肝、脾等处,另外长时间观察发现在活体样品中注射UCNPs 7天后,还可以观察到体内有其存在。
图11 用UCNPs处理的Panc1细胞的透射成像(左)和光致发光成像(右)。插图为局部细胞(红色)和背景(黑色)的光致发光光谱图[79]Fig.11 In vitro transmission(left)and PL(right)images of Panc 1 cells treated with UCNPs.Inset shows localized PL spectra taken from cells(red)and background(black)
图12 用兔子的anti-CEA8与UCNPs结合后与He-La细胞培养进行亮场成像(a),和用不同功率980 nm NIR激光激发(b)100,(c)300,(d)500,(e)700,和(f)900 mW[80]Fig.12 Fluorescence imaging of HeLa cells after incubated with rabbit anti-CEA8 Ab-conjugated UCNPs in bright field(a),and excited by a 980 nm NIR laser with different excitation powers:(b)100,(c)300,(d)500,(e)700,and(f)900 mW
由于淋巴排水系统是癌细胞新陈代谢的一个重要途径,但淋巴结的复杂微小结构使得很难对它进行识别,用NaYF4:Yb,Er和NaYF4:Yb,Tm纳米粒子作为荧光探针,Kobayashi[82]等人第一次提出了无内源荧光的小鼠的淋巴结双颜色成像。同样的问题也出现在血管成像中,疾病中血管变化及血管功能紊乱,血管成像能提供血管的数量和间距、血管系统的渗透性及血管的异常,Zhang等[83]人报道了用硅烷包覆的NaYF4:Yb,Er UCNPs来动态跟踪小鼠耳朵的成肌细胞来对血管成像。
到目前为止,在小动物中的成像做了多方面研究,而针对于肿瘤的成像在肿瘤的诊断和治疗方面是非常重要的。目前,UCNPs结合叶酸、抗体和多肽能用于活体肿瘤靶向成像。F.Y.Li[84]小组近期提出了一个环肽(c(RGDFK))修饰的NaYF4:Yb,Er,Tm,并用 PEG修饰(UCNP-RGD),来靶向成标记αvβ3-过量表达的老鼠肿瘤(人类恶性胶质瘤U87MG)(图13)。
图13 依据时间的上皮U87MG肿瘤上转换发光(左后腿,短箭头指出)和MCF-7肿瘤(右后腿,长箭头指出)在无胸腺的裸鼠上实验,在经脉注射UCNP-RGD 24 h 后[84]Fig.13 Time-dependent in vivo upconversion luminescence imaging of subcutaneous U87MG tumor(left hind leg,indicated by short arrows)and MCF-7 tumor(right hind leg,indicated by long arrows)borne by athymic nude mice after intravenous injection of UCNPRGD over a 24 h period
作为波尔兹曼分布的一个性质,UCNPs的不同发射谱带的相对强度会依赖于周围的环境。由于这个原因,UCNPs被提出作为纳米温度传感器。最近,基于UCNPs的光学温度传感器被应用于细胞内部温度的探测,Vetrone等[85]人提出了用绿色上转换发光的NaYF4:Yb3+,Er3+纳米粒子,用于Hela宫颈癌细胞的温度传感。
作为最有效的生物传感工具,基于荧光能量共振转移(FRET)的方法能用于检测生物亲和性相互作用并使生物分子在纳米级范围内产生改变。当UCNPs被用作供体分子时,可能会产生许多新的应用可能性,这就是发光能量共振转移(LRET)。Soukka等[86,87]人在基于上转换纳米粒子的 LRET传感上做了很多研究,他们提出了一个新颖的上转换LRET传感技术及其在多方面的潜在应用可能,如在血清中对E2(17β雌二醇)免疫测定、酶活性实验、双参数DNA杂交试验。
漫射光成像已经广泛应用在了小动物和人体组织的成像探测上。在人体上,漫射光成像,已经用于探测乳腺癌肿瘤,脑活动和脑新陈代谢[88-93]。然而,由于内源组织自发背景荧光、光在组织中传递的随机性等问题的存在,漫射光成像得到的成像效果相对不是很好。现有的一些改善成像质量的方法设备复杂、计算繁多。而上转换激发完全去除自发荧光,由图14我们可以看出即使很弱的自发背景荧光也会给成像精度产生严重的影响[94],同时上转换激发不需要复杂的仪器设备,而较大的反斯托克斯位移也使激发光和发射光易分开。相比传统的有机染料(下转换发光过程),上转换纳米材料的非线性性质可以获得更高的分辨率,这也是UCNPs在漫射光成像上的一大优势。
图14 一个组织图像中两个圆柱形荧光目标的荧光漫射光成像重构图 (a)使用UCNPs进行的重构;(b)使用罗丹明6G进行的重构[94]Fig.14 LDOT reconstruction of two cylindrical luminescent targets in a tissue phantom.Reconstruction using(a)UCNPs;(b)Rhodamine 6G
在临床医学上对癌症的诊断和治疗中,成像和治疗是不可分开的。不同于化学疗法、放射性疗法和外科手术,光动力治疗(photodynamic therapy,PDT)作为一个治疗癌症的技术,是被高能量光激发光敏剂产生活性氧类(ROS)来杀死病变细胞。在癌症组织中,有望能用980 nm的连续激光激发UCNPs穿透深层组织达到治疗效果。Austin[95]首次提出了用三层的NaYF4:Yb,Er与卟啉共同定位的光动力治疗。Zhang等人在 2009[96]年和 2010 年[97]分别报道了 NaYF4:Yb,Er@nSiO2@mSiO2和 NaYF4:Yb,Er@mSiO2纳米粒子将 ZnPc包含在介孔的 SiO2中,在500 mW 980 nm的连续激光下激发5 min,就可以从介孔SiO2中释放活性氧,达到PDT的治疗效果。
在最近的研究工作中,Zhang等[83]人又用叶酸(FA)和PEG修饰的UCNPs分别与不做修饰及只用PBS来治疗小鼠作为对比(图15),可以看到PDT的明显治疗效果。
图15 照片为每组1-3只小鼠分别静脉注射FAPEG-UCNs、未修饰的UCNP和PBS,照片显示了注射PDT前(0 d)和注射后(7 d)的肿瘤大小的改变(用虚线圆圈标出)。标尺10 mm[83]Fig.15 Representative gross photos of a mouse from each group 1-3 intravenously injected with FA-PEGUCNs,unmodified UCNs or PBS showing the change in tumor size(highlighted by dashed white circles)before(0 d)and 7 d after PDT treatment.Scale bars,10 mm
目前,分子多模式成像的技术主要集中在X射线计算机断层扫描技术(CT)、核磁共振成像(MRI)、单光子发射计算机断层成像术(SPECT)、正电子发射断层成像术(PET)和超声成像等[99-101]。近年来,大量的光致发光材料的出现,催生了一大批研究者对于促进在多模式造影剂存在时分子光学成像研究的兴趣[102-103],但明亮和稳定的多模式造影剂难以找到,发光探针在多模式造影剂上容易降解和漂白。然而,UCNPs很稳定,不存在漂白和老化现象,且多模式成像可以通过修饰晶体主体材料实现。漫射光成像,即使利用UCNPs,其空间分辨率依然不高[104];CT和MRI具有高的分辨率,却难以得到所需的信息;PET能提供手术前的一些详细数据,却不能很好适用于术后。主要讨论的是,基于UCNPs的多模式成像,如磁-光学成像、核-光学成像、CT-三模式成像。
文章综述了上转换发光纳米粒子的合成方法、光学特性、发光效率的优化及在生物方面的应用。作为新一代生物发光标记材料,UCNPs展现了许多优点,例如毒性小、无背景荧光、化学稳定性高、光稳定性好、光穿透能力强等。近几年里对UCNPs的生物应用研究急剧增加,展现了上转换纳米粒子的潜在应用价值。
但是尽管UCNPs有着快速强劲的发展,它仍然有着较低的发光效率,表面修饰有待改进,PDT的效率仍然不高。在未来的工作中,我们需要进一步优化材料合成,得到发光效率更高的纳米粒子。同时也要优化激发模式,发展上转换成像的专业仪器,推动该领域更多更好的研究工作的展开。最后重要的是研究要向临床应用发展,能达到确实诊断、治疗疾病的目的。
[1]DIEKE G H.Spectra and energy levels of rare earth ions in crystals[M].1968,Medium:X;Size:Pages:409.
[2]WANG F,LIU X.Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J].Chemical Society Reviews,2009,38(4):976-989.
[3]SUYVER J F,AEBISCHER A,BINER D,et al.Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion[J].Optical Materials,2005,27(6):1111-1130.
[4]AUZEL F.Upconversion and Anti-Stokes processes with f and d ions in solids[J].Chemical Reviews,2003,104(1):139-174.
[5]MAI H X,ZHANG Y W,SUN L D,et al.Size-and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy[J].The Journal of Physical Chemistry C,2007,111(37):13730-13739.
[6]FENG W,X F,WANG M,et al.Multicolour PEI/NaGdF4:Ce3+,Ln3+nanocrystals by single-wavelength excitation[J].Nanotechnology,2007,18(2):025701.
[7]YU M,LI F,CHEN Z,et al.Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors[J].Analytical Chemistry,2009,81(3):930-935.
[8]WU S,HAN G,MILLIRON D J,et al.Non-blinking and pho-tostable upconverted luminescence from single lanthanide-doped nanocrystals[J].Proceedings of the National Academy of Sciences,2009,106(27):10917-10921.
[9]NIKOOBAKHT B,BURDA C,BRAUN M,et al.The quenching of CdSe quantum dots photoluminescence by gold nanoparticles in solution[J].Photochemistry and Photobiology,2002,75(6):591-597.
[10]CHEN C L,KUO L R,CHANG C L,et al.In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons[J].Biomaterials,2010,31(14):4104-4112.
[11]WANG F,BANERJEE D,LIU Y,et al.Upconversion nanoparticles in biological labeling,imaging,and therapy[J].Analyst,2010,135(8):1839-1854.
[12]YI G,LU H,ZHAO S,et al.Synthesis,characterization,and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors[J].Nano Letters,2004,4(11):2191-2196.
[13]WANG L,LI Y.Controlled synthesis and luminescence of lanthanide doped NaYF4nanocrystals[J].Chemistry of Materials,2007,19(4):727-734.
[14]WANG X,ZHUANG J,PENG Q,et al.A general strategy for nanocrystal synthesis[J].Nature,2005,437(7055):121-124.
[15]WANG X,ZHUANG J,PENG Q,et al.Hydrothermal synthesis of rare-earth fluoride nanocrystals[J].Inorganic Chemistry,2006,45(17):6661-6665.
[16]WANG L,LI Y.Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials[J].Nano Letters,2006,6(8):1645-1649.
[17]ZHANG F,WAN Y,YU T,et al.Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence[J].Angewandte Chemie International Edition,2007,46(42):7976-7979.
[18]WANG L,LI P,LI Y.Down-and up-conversion luminescent nanorods[J].Advanced Materials,2007,19(20):3304-3307.
[19]HE HU,Z C,TIANYE CAO,et al.Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence[J].Nanotechnology,2008,19(37):375702.
[20]ZHANG,Z L A Y.An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb,Er/Tm nanocrystals with controllable shape and upconversion fluorescence[J].Nanotechnology,2008,19(24):345606.
[21]SI R,ZHANG Y W,YOU L P,et al.Rare-earth oxide nanopolyhedra,nanoplates,and nanodisks[J].Angewandte Chemie International Edition,2005,44(21):3256-3260.
[22]MAI H X,ZHANG Y W,SI R,et al.High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties[J].Journal of the American Chemical Society,2006,128(19):6426-6436.
[23]WEI Y,LU F,ZHANG X,CHEN D.Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4:Yb,Er nanoplates[J].Chemistry of Materials,2006,18(24):5733-5737.
[24]YI G S,CHOW G M.Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence[J]. Advanced Functional Materials,2006,16(18):2324-2329.
[25]OSTROWSKI A D,CHAN E M,GARGAS D J,et al.Controlled synthesis and single-particle Imaging of bright,sub-10 nm lanthanide-doped upconverting nanocrystals[J]. ACS Nano,2012,6(3):2686-2692.
[26]ZHOU J,YU M,SUN Y,et al.Fluorine-18-labeled Gd3+/Yb3+/Er3+co-doped NaYF4nanophosphors for multimodality PET/MR/UCL imaging[J].Biomaterials,2011,32(4):1148-1156.
[27]ZHAN Q Q,QIAN J,LIANG H,et al.Using 915 nm laser excited Tm3+/Er3+/Ho3+-Doped NaYbF4upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation[J].ACS Nano,2011,5(5):3744-3757.
[28]NACCACHE R,VETRONE F,MAHALINGAM V,et al.Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+nanoparticles[J].Chemistry of Materials,2009,21(4):717-723.
[29]BUDIJONO S J,SHAN J,YAO N,et al.Synthesis of stable block-copolymer-protected NaYF4:Yb3+,Er3+up-converting phosphor nanoparticles[J].Chemistry of Materials,2009,22(2):311-318.
[30]KUMAR R,NYK M,OHULCHANSKYY T Y,et al.Combined optical and MR bioimaging using rare earth Ion doped NaYF4nanocrystals[J]. Advanced Functional Materials,2009,19(6):853-859.
[31]SHEN J,SUN L D,ZHANG Y W,et al.Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy[J].Chemical Communications,2010,46(31):5731-5733.
[32]WANG M,LIU J L,ZHANG Y X,et al.Two-phase solvothermal synthesis of rare-earth doped NaYF4upconversion fluorescent nanocrystals[J].Materials Letters,2009,63(2):325-327.
[33]BOGDAN N,VETRONE F,OZIN G A,et al.Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles[J].Nano Letters,2011,11(2):835-840.
[34]LIU Q,SUN Y,LI C,et al.18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly[J].ACS Nano,2011,5(4):3146-3157.
[35]CHEN G Y,LIU H C,SOMESFALEAN G,et al.Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions[J].Applied Physics Letters,2008,92(11):113114-113114-3.
[36]CHEN G,SOMESFALEAN G,LIU Y,et al.Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO_{2}nanocrystals[J].Physical Review B,2007,75(19):195204.
[37]ZHOU J,SUN Y,DU X,et al.Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared(NIR-to-NIR)upconversion luminescence and magnetic resonance properties[J].Biomaterials,2010,31(12):3287-3295.
[38]WANG L,YAN R,HUO Z,et al.Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles[J].Angewandte Chemie International Edition,2005,44(37):6054-6057.
[39]WANG Z L,HAO J,CHAN H L W,et al.Simultaneous synthesis and functionalization of water-soluble up-conversion nanoparticles for in vitro cell and nude mouse imaging[J].Nanoscale,2011,3(5):2175-2181.
[40]WANG C,TAO H,CHENG L,et al.Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles[J].Biomaterials,2011,32(26):6145-6154.
[41]CHENG L,YANG K,LI Y,et al.Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy[J].Angewandte Chemie International Edition,2011,50(32):7385-7390.
[42]PEDRONI M,PICCINELLI F,PASSUELLO T,et al.Lanthanide doped upconverting colloidal CaF2 nanoparticles prepared by a single-step hydrothermal method:toward efficient materials with near infrared-to-near infrared upconversion emission[J].Nanoscale,2011,3(4):1456-1460.
[43]LI P,PENG Q,LI Y.Dual-Mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals[J].Advanced Materials,2009,21(19):1945-1948.
[44]QIAN H S,ZHANG Y.Synthesis of hexagonal-phase core shell NaYF4nanocrystals with tunable upconversion fluorescence[J].Langmuir,2008,24(21):12123-12125.
[45]LI Z,WANG L,WANG Z,et al.Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions[J].The Journal of Physical Chemistry C,2011,115(8):3291-3296.
[46]QIAN H S,GUO H C,HO P C L,et al.Mesoporous-silicacoated up-conversion fluorescent nanoparticles for photodynamic therapy[J].Small,2009,5(20):2285-2290.
[47]WANG M,MI C,ZHANG Y,et al.NIR-Responsive silicacoated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells[J].The Journal of Physical Chemistry C,2009,113(44):19021-19027.
[48]GAI S,YANG P,LI C,et al.Synthesis of magnetic,up-conversion luminescent,and mesoporouscore-shell-structured nanocomposites as drug carriers[J].Advanced Functional Materials,2010,20(7):1166-1172.
[49]LI X,KAO F J,CHUANG C C,et al.Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one-and two-photon excitation[J].Opt Express,2010,18(11):11335-11346.
[50]ZHANG P,STEELANT W,KUMAR M,et al.Versatile photosensitizers for photodynamic therapy at infrared excitation[J].Journal of the American Chemical Society,2007,129(15):4526-4527.
[51]LIU Q,CHEN M,SUN Y,et al.Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence /positron emission tomography imaging[J].Biomaterials,2011,32(32):8243-8253.
[52]ZENG J H,SU J,LI Z H,et al.Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb,Er3+phosphors of controlled size and morphology[J].Advanced Materials 2005,17(17):2119-2123.
[53]JU,J S A Y.A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaYF4:Yb,Er upconversion nanophosphors[J].Nanotechnology,2009,20(27):275603.
[54]GHOSH P,PATRA A.Tuning of crystal phase and luminescence properties of Eu3+doped sodium yttrium fluoride nanocrystals[J].The Journal of Physical Chemistry C,2008,112(9):3223-3231.
[55]WANG Z,TAO F,YAO L,et al.Selected synthesis of cubic and hexagonal NaYF4crystals via a complex-assisted hydrothermal route[J].Journal of Crystal Growth,2006,290(1):296-300.
[56]CHEN G,LIU H,LIANG H,et al.Upconversion emission enhancement in Yb3+/Er3+-Codoped Y2O3 nanocrystals by tridoping with Li+ions[J].The Journal of Physical Chemistry C,2008,112(31):12030-12036.
[57]WANG H Q,NANN T.Monodisperse upconverting nanocrystals by microwave-assisted synthesis[J].ACS Nano,2009,3(11):3804-3808.
[58]BAI Y,WANG Y,YANG K,et al.Enhanced upconverted photoluminescence in Er3+and Yb3+codoped ZnO nanocrystals with and without Li+ions[J].Optics Communications,2008,281(21):5448-5452.
[59]BAI Y,WANG Y,YANG K,et al.The Effect of Li on the spectrum of Er3+in Li-and Er-Codoped ZnO nanocrystals[J].The Journal of Physical Chemistry C,2008,112(32):12259-12263.
[60]BAI Y,YANG K,WANG Y,et al.Enhancement of the upconversion photoluminescence intensity in Li+ and Er3+codoped Y2O3 nanocrystals[J].Optics Communications,2008,281(10):2930-2932.
[61]CHENG Q,SUI J,CAI W.Enhanced upconversion emission in Yb3+and Er3+codoped NaGdF4nanocrystals by introducing Li+ions[J].Nanoscale,2012,4(3):779-784.
[62]WANG L,QIN W,LIU Z,et al.Improved 800 nm emission of Tm3+sensitized by Yb3+and Ho3+in NaYF4nanocrystals un-der 980 nm excitation[J].Opt Express,2012,20(7):7602-7607.
[63]WANG F,WANG J,LIU X.Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles[J]. Angewandte Chemie,2010,122(41):7618-7622.
[64]YANG D,LI C,LI G,et al.Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+nanoparticles by active-shell modification[J].Journal of Materials Chemistry,2011,21(16):5923-5927.
[65]WANG F,DENG R,WANG J,et al.Tuning upconversion through energy migration in core-shell nanoparticles[J].Nat Mater,2011,10(12):968-973.
[66]VETRONR F,NACCACHE R,MAHALINGAM V,et al.The active-core/active-shell approach:a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles[J].Advanced Functional Materials,2009,19(18):2924-2929.
[67]POMPA P P,MARTIRADONNA L,TARRE A D,et al.Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control[J].Nat Nano,2006,1(2):126-130.
[68]BARDHAN R,GRADY N K,COLE J R,et al.Fluorescence enhancement by Au nanostructures:nanoshells and nanorods[J].ACS Nano,2009,3(3):744-752.
[69]ESTEBAN R,LAROCHE M,GREFFET J J.Influence of metallic nanoparticles on upconversion processes[J].Journal of Applied Physics,2009,105(3),033107-033107-10.
[70]MERTENS H,POLMAN A.Plasmon-enhanced erbium luminescence[J].Applied Physics Letters,2006,89(21):211107-211107-3.
[71]ZHANG H,LI Y,IVANOV I A,et al.Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells[J].Angewandte Chemie,2010,122(16):2927-2930.
[72]SUDHEENDRA L,ORTALAN V,DEY S,et al.Plasmonic enhanced emissions from cubic NaYF4:Yb:Er/Tm nanophosphors[J].Chemistry of Materials,2011,23(11):2987-2993.
[73]PAUDEL H P,ZHONG L,BAYAT K,et al.Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces[J].The Journal of Physical Chemistry C,2011,115(39):19028-19036.
[74]FENG W,SUN L D,YAN C H.Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystals via a direct assembly method[J].Chemical Communications,2009,0(29):4393-4395.
[75]SCHIETINGER S,AICHELE T,WANG H Q,et al.Plasmonenhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals[J].Nano Letters,2009,10(1):134-138.
[76]LIU N,QIN W,QIN G,et al.Highly plasmon-enhanced upconversion emissions from Au@[small beta]-NaYF4:Yb,Tm hybrid nanostructures[J].Chemical Communications,2011,47(27):7671-7673.
[77]KOU L,LABRIE D,CHYLEK P.Refractive indices of water and ice in the 0.65-to 2.5-μm spectral range[J].Appl Opt,1993,32(19):3531-3540.
[78]JIN J,GU Y J,MAN C W Y,et al.Polymer-Coated NaYF4:Yb3+,Er3+upconversion nanoparticles for charge-dependent cellular imaging[J].ACS Nano,2011,5(10):7838-7847.
[79]NYK M,KUMAR R,OHULCHANSKYY T Y,et al.High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+and Yb3+doped fluoride nanophosphors[J].Nano Letters,2008,8(11):3834-3838.
[80]WANG M,MI C C,WANG W X,et al.Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles[J].ACS Nano,2009,3(6):1580-1586.
[81]SALTHOUSE C,HILDERBRANDil S,WEISSLEDER R,et al.Design and demonstration of a small-animal up-conversion imager[J].Opt Express,2008,16(26):21731-21737.
[82]KOBAYASHI H,KOSAKA N,OGAWA M,et al.In vivo multiple color lymphatic imaging using upconverting nanocrystals[J].Journal of Materials Chemistry,2009,19(36):6481-6484.
[83]IDRIS N M,GNANASAMMANDHAN M K,ZHANG J,et al.In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers[J].Nat Med,2012,18(10):1580-1585.
[84]XIONG L,CHEN Z,TIAN Q,et al.High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors[J].Analytical Chemistry,2009,81(21):8687-8694.
[85]VETRONE F,NACCACHE R,ZAMARRóN A,et al.Temperature sensing using fluorescent nanothermometers[J].ACS Nano,2010,4(6):3254-3258.
[86]KUNINGAS K,RANTANEN T,UKONAHO T,et al.Homogeneous assay technology based on upconverting phosphors[J].Analytical Chemistry,2005,77(22):7348-7355.
[87]RANTANEN T,JÄRVENPÄÄ M L,VUOJOLA J,et al.Fluorescence-quenching-based enzyme-activity assay by using photon upconversion[J].Angewandte Chemie International Edition,2008,47(20):3811-3813.
[88]BOHM T D,GRIFFIN S L,DELUCA J P M,et al.The effect of ambient pressure on well chamber response:monte carlo calculated results for the HDR 1000 Plus[J].Medical Physics,2005,32(4):1103-1114.
[89]CORLU A,CHOE R,DURDURAN T,et al.Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans[J].Opt Express,2007,15(11):6696-6716.
[90]LEFF D,WARREN O,ENFIED L,et al.Diffuse optical imaging of the healthy and diseased breast:A systematic review[J].Breast Cancer Research and Treatment,2008,108(1):9-22.
[91]A P Gibson,J C H A S R A.Recent advances in diffuse optical imaging[J].Physics in Medicine and Biology,2005,50(4):R01-R43.
[92]LI A,MILLER E L,KILMER M E,et al.Tomographic optical breast imaging guided by three-dimensional mammography[J].Appl Opt,2003,42(25):5181-5190.
[93]FRANCESCHINI M A,BOAS D A.Noninvasive measurement of neuronal activity with near-infrared optical imaging[J].NeuroImage,2004,21(1):372-386.
[94]XU C T,AXELSSON J,ANDRSSON ENGELS S.Fluorescence diffuse optical tomography using upconverting nanoparticles[J].Applied Physics Letters,2009,94(25):251107-251107-3.
[95]UNGUN B,PRUD'HOMME R K,BUDIJON S J,et al.Nanofabricated upconversion nanoparticles for photodynamic therapy[J].Opt Express,2009,17(1):80-86.
[96]YANG L W,HAN H L,ZHANG Y Y,et al.White emission by frequency Up-Conversion in Yb3+-Ho3+-Tm3+triply doped hexagonal NaYF4nanorods[J].The Journal of Physical Chemistry C,2009,113(44):18995-18999.
[97]GUO H,QIAN H,IDRIS N M,et al.Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer[J].Nanomedicine:Nanotechnology,Biology and Medicine,2010,6(3):486-495.
[98]ASHBURNER J,FRISTON K.Multimodal image coregistration and partitioning-A unified framework[J].NeuroImage,1997,6(3):209-217.
[99]CAI W,CHEN X.Multimodality molecular imaging of tumor angiogenesis[J].Journal of Nuclear Medicine,2008,49(Suppl 2):113S-128S.
[100]MAES F,COLLIGON A,VANDERMEULEN D,et al.Multimodality image registration by maximization of mutual information[J].Medical Imaging,IEEE Transactions on,1997,16(2):187-198.
[101]PETERS T,DAVEY B,MUNGER P,et al.Three-dimensional multimodal image-guidance for neurosurgery[J].Medical Imaging,IEEE Transactions on Medial Imaging,1996,15(2):121-128.
[102]TROMBERG B J,POGUE B W,PAUSEN K D,et al.Assessing the future of diffuse optical imaging technologies for breast cancer management[J].Medical Physics,2008,35(6):2443-2451.
[103]ZHANG Q,BRUKILACCHIO T J,LI A,et al.Coregistered tomographic x-ray and optical breast imaging:initial results[J].Journal of Biomedical Optics,2005,10(2):024033-024033.
[104]XU C T,SVENMARKER P,LIU H,et al.High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles[J].ACS Nano,2012,6(6):4788-4795.