孔灵君, 徐 坤* , 王 磊,2, 何 平, 张永征
(1作物生物学国家重点实验室,农业部黄淮地区园艺作物生物学与种质创制重点实验室,山东农业大学园艺科学与工程学院,山东泰安 271018; 2德州市农业科学研究院,山东德州253015)
氮硫互作对越冬大葱生长及品质的影响
孔灵君1, 徐 坤1*, 王 磊1,2, 何 平1, 张永征1
(1作物生物学国家重点实验室,农业部黄淮地区园艺作物生物学与种质创制重点实验室,山东农业大学园艺科学与工程学院,山东泰安 271018; 2德州市农业科学研究院,山东德州253015)
为探讨氮、硫对大葱生长及产量品质的影响,本文采用裂区试验设计,研究了盆栽砂培条件下越冬大葱对营养液氮、硫水平的响应特性。结果表明,随着氮水平的提高,大葱各器官生长量均显著增加,产量以N 16.00 mmol/L(N2)时较高,分别比N 4.00 mmol/L(N1/2)、 8.00 mmol/L(N1)时提高了50.09 %和22.46 %;而随硫水平的升高,大葱生长量亦呈增加趋势,但反应不如对氮敏感,产量以S 1.68 mmol/L(S1)、3.35 mmol/L(S2)时较高,继续增加硫浓度至6.69 mmol/L(S4)时则产量降低。尽管氮、硫对大葱主要内含物质的作用方向不尽相同,但大葱硫化物(以丙酮酸计)含量均随氮、硫供应水平的增加而显著增加,且合理增施氮、硫均可显著改善大葱的综合品质。氮、硫对大葱生长及产量品质存在显著的互作效应,综合分析表明,以营养液中N 16.00 mmol/L(N2)、S 3.35 mmol/L(S2)时最有利于大葱的生长及产量和品质的提高。
大葱; 氮; 硫; 生长; 产量; 品质
前人研究表明,硫对植物蛋白质合成、叶绿体构成和功能维持、辅酶及小分子物质合成、抗逆、生长调节等均有重要作用[1],同时硫素代谢关键酶乙酰丝氨酸水解酶(OASS)与氮素同化也有密切关系[2]。朱云集等[3]研究表明,高氮可诱导低硫水平下小麦OASS的活性,而硫则可调节不同氮水平下硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷丙转氨酶(GPT)等氮同化关键酶的活性,因此,氮硫配施可显著提高小麦籽粒产量。祝小捷等[4]研究也表明,不同氮水平下施硫均能促进小麦营养器官贮藏的碳、氮向籽粒的转运,提高籽粒产量;但在供氮充足的条件下增施硫,虽可延缓小麦叶片衰老,有利于植株生物量的增加,但收获指数降低[5]。氮硫配施可显著改善玉米植株营养状况,提高玉米产量及籽粒蛋白质、氨基酸、可溶性糖和粗脂肪含量[6]。张培艳等[7]研究发现,增施氮、硫均可提高油菜秸秆及籽粒的产量,但氮硫互作效应不显著;而氮、 硫均可增加洋葱鳞茎生长量及丙酮酸含量,并影响矿质元素的吸收,且氮硫之间存在显著的互作效应[8]。
大葱(AlliumfistulosumL.var.giganteamMakino)为百合科葱属二、三年生草本植物,以叶片及叶鞘(假茎)为食用器官,是我国人民喜食的调味佳品。硫作为大葱风味物质有机硫化合物的重要组成元素之一,除维持大葱的正常生长发育外,对大葱硫化物的形成与积累有重要作用[9]。氮作为植物必需的大量元素,可显著提高大葱产量[10],而合理施用氮和硫除了可增加大葱的生长量外,还可显著提高硫化物含量[11-13]。但关于氮硫互作对大葱产量及其综合品质的研究鲜见报道。为此,本文研究了氮硫配比对大葱产量及品质的影响,以期为大葱优质高产栽培提供合理的施肥依据。
1.1 供试材料
1.2 试验设计
1.3 测定项目及方法
2012年4月2号大葱收获时,按区组实有株数称重,计算单株产量;同时每个处理在区组中随机取10株,分别测定大葱株高、假茎长度、假茎直径以及根、假茎、叶片鲜重,以10株平均值为该区组各处理的实测值。之后,将大葱假茎按重量等分为2份,其中一份置鼓风干燥箱内105℃杀青15 min,并于70℃烘干至恒重,计算干物质含量,另一份用于测定相关品质指标。
大葱假茎Vc用2,6-二氯酚靛酚滴定法测定[15]; 硝酸盐用水杨酸法测定[16]; 可溶性蛋白用考马斯亮蓝法测定[16]; 丙酮酸用2,4-二硝基苯肼显色法测定[17]; 可溶性糖用蒽酮法测定[16]。大葱综合品质评分参考宋春凤等[18]的相对比较法进行,即将各品质指标最大值确定为100分,某处理该指标测定值占最大值的百分数即为该指标的实际得分,各处理所有品质指标得分与其权重值乘积之和,即为该处理的综合品质得分。根据大葱食用特性,本研究确定各指标的权重值分别为干物质含量0.2,丙酮酸含量0.3,可溶性蛋白含量0.2,可溶性糖含量0.2,Vc含量0.2,硝酸盐含量-0.1。
试验数据用Excel和DPS软件进行处理和统计分析,Duncan新复极差法进行差异显著性检验。
2.1 氮硫互作对大葱生长的影响
不同处理大葱单株生长量(原始数据略)统计分析结果见表1。可以看出,营养液氮素水平对大葱植株各生长指标均有显著或极显著影响,且均以N2处理较高,N1次之,N1/2较低。如N2和N1处理的大葱株高、假茎直径分别较N1/2高22.48 %、11.03 %和16.90 %、6.36 %,但假茎长度仅分别增加了6.36 %和5.49 %。硫水平除对大葱假茎长度无显著影响外,对其它生长指标均有极显著影响,多表现为以S1处理较好,营养液硫素不足或过高均不利于大葱的生长。表1还显示,氮硫互作除对大葱假茎长度无显著影响外,对其它生长指标均有显著或极显著影响。
表1 不同处理大葱生长量的方差分析与多重比较Table 1 Multiple comparison of Chinese spring onion growth among different treatments
注(Note):同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平 Values followed by different small and capital letters in same column mean significant at the 5% and 1% levels, respectively.
2.2 氮硫互作对大葱主要内含物含量的影响
统计分析结果(表2)表明,营养液氮素水平对大葱假茎主要内含物含量均有显著或极显著影响,但作用方向不同,其中干物质、可溶性糖及Vc含量随氮素的增加呈降低的趋势,如N2分别较N1/2处理降低了14.98 %、7.14 %和5.70 %,而丙酮酸、可溶性蛋白及硝酸盐含量则相反,其中N2较N1/2分别增加了38.55 %、97.37 %和45.45 %。硫素除对Vc含量无显著影响外,对其它主要内含物含量均有极显著或显著影响,但以对丙酮酸含量的影响为甚,如丙酮酸含量S2较S0处理增加了69.70 %,但S4与S2无显著差异,其它指标则仅在较低硫水平条件下,随硫水平的升高才表现出显著差异。表2还表明氮、硫对大葱干物质、可溶性蛋白、Vc及硝酸盐含量的互作效应不显著,但对丙酮酸、可溶性糖含量有极显著的互作效应。
2.3 氮硫互作对大葱产量和品质的影响
从表3和表4可以看出,氮处理、硫处理及氮硫互作(N×S)的P值均小于0.01,表明氮、硫处理及其互作效应对大葱单株产量和综合品质均有极显著影响。本试验条件下,大葱产量随营养液氮水平的升高逐渐增加,且以N2处理的大葱产量较高,达165.07g/plant,分别比N1/2、N1增加了50.09 %和22.46 %。虽然大葱产量随营养液硫水平的升高亦呈增加趋势,但反应不如氮素敏感,产量以S1较高,比S0增加16.28 %,继续升高硫水平至S2时,产量无显著变化,但硫水平达S4时,大葱产量有所降低,较S1减产8.96 %,但仍比S0增产5.86 %。大葱综合品质随着氮素水平的升高而提高,其综合品质分数N2、N1较N1/2分别增加了9.95%、7.52%。随硫水平的升高,大葱综合品质也显著提高,但至S2后继续增加至S4,则综合品质未发生显著变化。
表2 不同处理大葱假茎主要内含物的方差分析与多重比较Table 2 Multiple comparison of Chinese spring onion cauloid main inclusion among different treatments
注(Note):同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平 Values followed by different small and capital letters in same column mean significant at the 5% and 1% levels, respectively.
表3 不同处理对大葱产量和综合品质的影响Table 3 Effects of interaction of nitrogen and sulfur on Chinese spring onion yield and integrated quality value
表4 不同处理间大葱产量和综合品质的方差分析与多重比较Table 4 Multiple comparison of Chinese spring onion yieldand integrated quality value among different treatments
注(Note):同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平 Values followed by different small and capital letters in same column mean significant at the 5% and 1% levels, respectively.
[1] 谢瑞芝, 董树亭, 胡昌浩. 植物硫素营养研究进展[J]. 中国农学通报, 2002, 18(2): 65-69. Xie Y Z, Dong S T, Hu C H. The progress of studies on sulfur nutrition of plant [J]. Chin. Agric. Sci. Bull. , 2002, 18(2): 65-69.
[2] Smith I K. Regulation of sulfate assimilation in tobacco cells[J]. Plant Physiol. , 1980, 66: 877-883.
[3] 朱云集, 李国强, 郭天财, 等. 硫对不同氮水平下小麦旗叶氮硫同化关键酶活性及产量的影响[J]. 作物学报, 2007, 33(7): 1116-1121. Zhu Y J, Li G Q, Guo T Cetal. Effect of sulfur on key enzyme activities involved in nitrogen and sulphur assimilation in flag leaves and grain yield under different nitrogen levels in winter wheat (TriticumaestivumL.)[J]. Acta. Agron. Sin. , 2007, 33(7): 1116-1121.
[4] 祝小捷, 朱云集, 郭天财, 等. 不同氮素水平下施硫对高产小麦碳氮运转和产量的影响[J]. 西北植物学报, 2007, 27(9): 1820-1825. Zhu X J, Zhu Y J, Guo T Cetal. Effect of sulfur application on carbon and nitrogen transport and grain yield of high yield wheat cultivars in different nitrogen fertilizer levels [J]. Acta Bot. Bor.-Occid. Sin., 2007, 27(9): 1820-1825.
[5] 刘洋, 石慧清, 龚月桦. 硫氮配施对持绿型小麦氮素运转及叶片衰老的影响[J]. 西北植物学报, 2012, 32(6): 1206-1213. Liu Y, Shi H Q, Gong Y H. Effects of sulfur and nitrogen fertilizer combination on nitrogen transfer and leaf senescence in stay-green wheat[J], Acta Bot. Bor.-Occid. Sin. , 2012, 32(6): 1206-1213.
[6] 谢瑞芝, 董树亭, 胡昌浩. 氮硫互作对玉米籽粒营养品质的影响[J]. 中国农业科学, 2003, 36(3): 263-268. Xie R Z, Dong S T, Hu C H. Influence of nitrogen and sulfur interaction on grain quality of maize[J]. Sci. Agric. Sin. , 2003, 36(3): 263-268.
[7] 张培艳, 孟赐福, 吴增祺, 等. 水稻土施用不同氮、 硫水平对油菜产量的影响[J]. 中国油料作物学报, 2001, 23(4): 67-69. Zhang P Y, Meng C F, Wu Z Qetal. Effect of different nitrogen and sulphur levels on yields of rapeseed in paddy soil[J]. Chin. J. Oil Crop Sci., 2001, 23(4): 67-69.
[8] Timothy W , Dean A ,David E. Nitrogen and sulfur influence nutrient usage and accumulation in onion[J]. Plant Nutr., 2005, 27(9): 1667-1686.
[9] 刘松忠, 陈清, 冯固, 何洪巨. 氮硫供应对大葱含硫有机物及其代谢关键酶活性的影响[J]. 西北农业学报, 2010, 19(6): 148-152. Liu S Z, Chen Q, Feng G, He H J. Effects of nitrogen and sulfur supply on sulfur-containing compounds and activities of key enzymes for sulfur metabolism in Chinese spring onion[J]. Acta Agric. Bor.-occid. Sin., 2010, 19(6): 148-152.
[10] 江丽华, 刘兆辉, 张文君, 等. 氮素对大葱产量影响和氮素供应目标值的研究[J]. 植物营养与肥料学报, 2007, 13(5): 890-896. Jiang L H, Liu Z H, Zhang W Jetal. Study on the effect of nitrogen on green Chinese onion yield and N supplving target value[J], Plant Nutr. Fert. Sci., 2007, 13(5): 890-896.
[11] 刘松忠, 何洪巨, 冯固, 陈清. 氮、 硫供应对章丘大葱生长和含硫有机物含量的影响[J]. 植物营养与肥料学报, 2009, 15(4): 884-889. Liu S Z, He H J, Feng G, Chen Q. Effect of N and S supply on the growth and organo-sulfur compounds of Zhangqiu spring onion[J]. Plant Nutr. Fert. Sci., 2009, 15(4): 884-889.
[12] Lui S Z, He H J, Feng G, Chen Q. Effect of nitrogen and sulfur interaction on growth and pungency of different pseudostem types of Chinese spring onion (AlliumfistulosumL.)[J]. Sci. Hort., 2009, 121(1-2): 12-18.
[13] Guo T, Zhang J L, Christie P, Lin X L. Influence of nitrogen and sulfur fertilizers and inoculation with arbuscular mycorrhizal fungi on yield and pungency of spring onion[J]. Plant Nutr., 2006, 29(10): 1767-1778.
[14] 刘士哲. 现代实用无土栽培技术[M]. 北京: 中国农业大学出版社, 2001. Liu S Z. Modern practical soilless cultivation technique[M]. Beijing: China Agricultural University Press, 2001.
[15] 黄晓钰, 刘邻渭. 食品化学综合实验[M]. 北京: 中国农业大学出版社, 2002. Huang X Y, Liu L W. Food chemical comprehensive experiment[M]. Beijing: China Agricultural University Press, 2002.
[16] 赵世杰, 刘华山, 董新纯. 植物生理学实验指导[M]. 北京: 中国农业科技出版社, 1998. Zhao S J, LIu H S, Dong X C. Techniques of plant physiological experiment[M]. Beijing: China Agricultural Science and Technology Press, 1998.
[17] 文树基. 基础生物化学实验指导[M]. 西安: 陕西科学技术出版社,1994. Wen S J. Guide of biochemistry experiment [M]. Xi’an: Shaanxi Science and Technology Press, 1994.
[18] 宋春凤, 徐坤. 氮钾配饰对芋头产量和品质的影响[J]. 植物营养与肥料学报, 2004, 10(2): 167-170. Song C F, Xu K. Effect of nitrogen and potassium on yield and quality of taro [J]. Plant Nutr. Fert. Sci., 2004, 10(2): 167-170.
[19] 林昌华, 白由路, 罗国安. 氮、 磷、 钾肥对大葱商品性状及其产量的影响[J]. 植物营养与肥料学报, 2009, 15(3): 649-655. Lin C H, Bai Y L, Luo G A. Effects of N, P and K application on merchandise properties and yields of welsh-onion (Alliumfistulosukm)[J]. Plant Nutr. Fert. Sci., 2009, 15(3): 649-655.
[20] Herison C, Masabni J G, Zandstra B H. Increasing seedling density, age, and nitrogen fertilization increases onion yield [J]. Hort. Sci., 1993, 28(1): 23-25.
[21] 刘中良, 刘世琦, 张自坤. 硫对大蒜生理特性及主要矿质元素吸收的影响[J]. 中国蔬菜, 2010, (10): 46-50. Liu Z L, Liu S Q, Zhang Z K. Effects of sulfur on physiological characteristics and main mineral elements absorption in garlic[J]. China Veget. , 2010, (10): 46-50.
[22] 张宇亭, 罗珍, 郭涛. 供硫和丛枝菌根真菌对洋葱生长和品质的影响[J]. 植物营养与肥料学报, 2011, 17(5): 1283-1287. Zhang Y L, Luo Z, Guo T. Effects of arbuscular mycorrhizal fungi inoculation and sulfur fertilization on growth and quality of onion[J], Plant Nutr. Fert. Sci., 2011, 17(5): 1283-1287.
[23] 杨凤娟, 刘世琦, 王秀峰. 硫对大蒜生理生化指标及营养品质的影响[J]. 应用生态学报, 2004, 15(11): 2095-2098. Yang F J, Liu S Q, Wang X F. Effect of sulfur on physiolgical and bilchemical indices and nutrition quality of garlic[J]. Chin. J. Appl. Ecol. , 2004, 15(11): 2095-2098.
[24] Kodera Y, Suzuki A, Imada Oetal. Physical,chemical,and biological properties of S-allylcysteine,an amino acid derived from garlic[J]. Agric. Food Chem., 2002, 50:622-632.
[25] Randle W M, Kopsell D A, Kopsell D Eetal. Field sampling short-day onions for bulb pungency [J]. Hort Techn., 1998, 8:329-332.
[26] Randle W M. Increasing nitrogen concentration in hydroponic solutions affects onion flavor and bulb quality [J]. J. Am. Soc. Hort. Sci., 2000, 125(2): 254-259.
[27] Freeman G.G, Mossadeghi N. Effect of sulphate nutrition on flavour components of onion (Alliumcepa)[J]. J. Sci. Food Agric., 2006, 21(12): 610-615.
[28] 张英鹏, 徐旭军, 林咸永, 等. 供氮水平对菠菜产量、硝酸盐和草酸积累的影响[J]. 植物营养与肥料学报, 2004, 10(5): 494-498. Zhang Y P, Xu X J, Lin X Yetal. Influence of different nitrogen levels on biomass, nitrate and oxalate accumulation in spinach[J]. Plant Nutr. Fert. Sci., 2004, 10(5): 494-498.
[29] 葸玉琴, 张金文, 牛俊义. 硫、6-BA,水分和温度对春小麦硝酸还原酶活性的影响[J]. 甘肃农业大学学报, 1996, 31(3): 268-272. Xi Y Q, Zhang J W, Niu J Y. Effects of sulphate, 6-benzylaminopurine, moisture and temperature on NRA in spring wheat[J]. J. Gansu Agric. Univ., 1996, 31(3): 268-272.
[30] 朱云集, 郭天财, 谢迎新, 等. 施用不同种类硫肥对豫麦49产量和品质的影响[J]. 作物学报, 2006, 32(2): 293-297. Zhu Y J, Guo T C, Xie Y Xetal. Effects of different sulphur fertilizers on yield and quality of winter wheat (TriticumAestivumL. ) cultivar yumai 49[J]. Acta Agron. Sin. , 2006, 32(2): 293-297.
[31] 刘中良, 刘世琦, 张自坤. 硫对设施水培大蒜光合特性和鳞茎品质的影响[J]. 园艺学报, 2010, 37(4): 581-588. Liu Z L, Liu S Q, Zhang Z K. Effects of sulfur content in nutrient solution on photosynthetic characteristics and quality of garlic[J]. Acta Hort. Sin., 2010, 37(4): 581-588.
[32] 周杰, 王东, 满建国, 等. 高氮条件下硫氮互作对冬小麦幼苗生长及氮、硫吸收利用的影响[J]. 植物营养与肥料学报, 2012, 18(1): 42-51. Zhou J, Wang D, Man J Getal. Effects of interaction of nitrogen and sulfur on seedling growth, uptake and utilization of nitrogen and sulfur of winter wheat under high nitrogen conditions [J]. Plant Nutr. Fert. Sci. , 2012, 18(1): 42-51.
[33] 祝小捷, 朱云集, 刘小平, 等. 施硫对小麦旗叶糖含量和籽粒淀粉积累的影响[J]. 麦类作物学报, 2008, 28(3): 471-475. Zhu X J, Zhu Y J, LIu X Petal. Effects of sulfur application on sugar content of flag leaves and starch accumulation of kernels in wheat[J]. J. Tritic. Crops, 2008, 28(3): 471-475.
InfluenceofnitrogenandsulfurinteractionongrowthandqualityofChinesespringonion
KONG Ling-jun1, XU Kun1*, WANG Lei1,2, HE Ping1, ZHANG Yong-zheng1
(1StateKeyLaboratoryofCropBiology/MinistryofAgricultureKeyLaboratoryofHorticulturalCropBiologyandGermplasmCreationinHuang-HuaiRegion/CollegeofHorticultureScienceandEngineering,ShandongAgriculturalUniversity,Tai’an,Shandong271018,China; 2DezhouAcademyofAgriculturalSciences,Dezhou,Shandong253015,China)
In order to investigate effects of nitrogen and sulfur on growth, yield and quality of Chinese spring onion, the response characteristics of sand potted overwintering Chinese spring onion to N and S fertilization levels were studied by using the split plot design. The results show that the biomasses of onion organs are increased significantly with the solution N increasing, and the higher change of yield is under N 16.00 mmol/L(N2), which is increased by 50.09 % and 22.46 % under the N 4.00 mmol/L(N1/2) and N 8.00 mmol/L(N1) respectively. Meanwhile the biomasses of all organs are also increased with solution S increasing, but the response is less sensitive than the response to N. The yields are higher while sulfur concentration are 1.68 mmol/L(S1) and 3.35 mmol/L(S2) levels, but the yields begin to decrease when the sulfur concentration reaches to 6.69 mmol/L(S4). Although the main inclusion reacts differently in response to N and S levels, the organic-sulfur compounds (EPY) are increased significantly as the increases of N and S levels. Moreover, combined application of N and S could significantly improve the Chinese spring onion’s comprehensive quality. The interaction effect of nitrogen and sulfur is significant on growth, yield and quality of Chinese spring onion. The results of comprehensive analysis show that the nutrient solution containing N 16.00 mmol/L(N2) and S 3.35 mmol/L(S2) is optimal to improving the growth, yield and quality of Chinese spring onion.
Chinese spring onion; nitrogen; sulfur; growth; yield; quality
2012-11-12接受日期2013-05-15
山东省现代农业产业技术体系专项资金(201002-05)资助。
孔灵君(1987—),女,山东东营人,硕士研究生,主要从事蔬菜栽培生理方面的研究。 Tel: 0538-8241783, E-mail: superus@sdau.edu.cn。 * 通信作者 E-mail: xukun@sdau.edu.cn
S633.1;S143
A
1008-505X(2013)05-1272-07