刘向平, 章国庆
(上海理工大学理学院,上海 200093)
带非线性边界的p-Laplacian问题的多重解
刘向平, 章国庆
(上海理工大学理学院,上海 200093)
研究了外域空间上一类带非线性边界的p-Laplacian问题多重解的存在性.利用极值原理和山路引理,证明了带非线性边界的p-Laplacian问题至少存在2个非平凡解.
多重解;非线性边界;山路引理
几何学中的一些问题都与带非线性边界的p-Laplacian方程相关,如微分几何中的标量曲率问题和Yamabe问题[1-2]可导出类似的如下带非线性边界条件的p-Laplacian问题
1992年,Yu[3]研究了在外域上带Dirichlet边界的p-Laplacian问题.分别对超线性、次线性、超线性加次线性这3种情况进行了讨论,得到了非平凡解的存在性和正则性.2001年,Montefusco和Radulescu[4]利用山路引理证明了在无界区域上的带非线性边界的p-Laplacian问题至少存在1个非平凡解.2008年,Filippucci和Pucci[5]证明了外域上带非线性边界的p-Laplacian问题至少存在1个非平凡解,并给出了解的正则性.但对于此类问题多重解的研究并不多见,本文利用山路引理和在局部区域找极小值点的方法,证明了问题(1)至少有2个非平凡解,得到了多重解的存在性.
利用山路引理和在局部区域找极小值点的方法证明定理1.
[1] Rossi J D.El l iptic problems with nonl inear boundary conditions and the Sobolev trace theorem[M].New York:Elsevier,2005.
[2] Druet O,Hebey E.El l iptic equations of Yamabe type[J].International Mathematics Research Surveys,2005,1(1):1-113.
[3] Yu L S.Nonl inearp-Laplacian problems on unbounded domains[J].Proc A merican Mathematical Soc,1992,115(4):1037-1045.
[4] Momtefusco E,RadulescuV.Nonl ineareigenvalue problems forquasi l inearoperatorsonunbounded domains[J].Nonl inear Differ Equ Appl,2001,8(2):481-497.
[5] Fi l ippucci R,Pucci P,Radulescu V.Existence and nonexistence results forquasi l inearel l ipticexterior problems with nonl inear boundary conditions[J]. Com m Partial Differ Eqations,2008,33(3):706-717.
[6] Pfluger K.Compact traces in weighted Sobolve spaces[J].Analysis,1998,18(1):65-83.
[7] Pfluger K.Existence andmultipl icityof solutions to ap-Laplacian equationwith nonl inear boundary conditions[J].Electronic Journal ofDifferential Equations,1998(10):1-13.
[8] Diaz J I.Nonl inear partial differential equations and free boundaries[M]∥Research Notesin Mathematics. Boston:Prentice ltal l,1986.
(编辑:石 瑛)
M ultiplicity Solutions forp-Laplacian Proble m s with N onlinear Boundary Conditions
LIU Xiang-ping, ZHANG Guo-qing
(College of Sciences,University of Shanghai for Science and Technology,Shanghai 200093,China)
The existence of multiple solutions for a class ofp-Laplacian problems with nonlinear boundary conditions on exterior domain was investigated.Using extremum principle and mountain pass lem ma,the existence of at least two nontrivial solutions forp-Laplacian equations with nonlinear boundary conditions was proved.
m ultiplicity solutions;nonlinear boundary conditions;Mountain Pass Lem m a
O 175.25
A
1007-6735(2013)05-0449-03
2012-07-18
上海市自然科学基金资助项目(11ZR1424500);上海市一流学科建设资助项目(X T K X2012)
刘向平(1987-),男,硕士研究生,研究方向:偏微分方程.E-mai l:l iuxp83355650@yeah.net
章国庆(1973-),男,副教授,研究方向:偏微分方程.E-mai l:shzhangguoqing@126.com