赵献萍
江总书记曾说过:"创新是一个民族进步的灵魂,是国家兴旺发达的不竭动力。"那么对小学生来说,创新意识的培养显得尤为重要,因为,他们是明天的希望。新的世纪,我们迎来了基础教育中数学教学改革的春天,它明确指出"不同的人在数学上求得不同的发展。"在活动中针对不同个性的学生采取不同的方法,让他们为自己的天空凸起一片绿。
1.营造宽松、愉悦的活动氛围,把学习的主动权交给学生,让他们敢想敢做
在教学活动中,有的老师总是在备课时就为学生设定一种"最好的方法",课中设法"启发"、"诱导",甚至规定只能用这种方法。这种"以教师为中心"的教学模式极易扼杀学生的创新意识,阻碍学生的个性发展。因为我们每个老师都有自己的教学风格,而学生也有自己的学习风格,因此培养学生的创新意识,我们要学会营造宽松、愉悦的活动氛围,把学习的主动权交给学生,让他们敢想、敢做。只要是学生通过自己的思维得出的结论,从创新的角度看都是有价值的,应该得到肯定。只有这样学生才能充分展现自己的个性,从而不断增强创新意识。
例如,我在"长方形的认识"教学中是这样做的:在学生认识了长方形有4条边,4 个角后,我提出了这样一个问题,你认为长方形的边有什么特征,4个角的关系怎样?你准备采用什么方法来验证你的想法?于是全班学生纷纷开动自己的脑筋,并分别采用了量一量,折一折等方法,通过自主的探索研究,概括出"长方形的对边相等,4个角都是直角"的特征。甚至还有的学生说"长方形的四条边要是相等就变成了正方形,所以说,正方形是特殊的长方形。"采用以上教学方法,提高了学生探索问题的能力,把学习的主动权交给学生,使学生人人动手,个个参与,既创设和谐、愉悦的课堂氛围,又增强了创新意识。尽管学生在表达时不是科学的,但充分体现了他们的学习个性。作为教师应对他们敢于冲破"从众"心理束缚的精神予以肯定,其次给予真诚的帮助和引导促其个性和谐发展。
2.注重个体的思考与教法相结合,让学生成为新时代的"爱迪生"
认知的发展离不开独立思考、积极探求的实践活动。数学教学活动中应放手大胆地让学生去尝试,使学生在独立思考中学会思考,掌握思考方法,迸发出创新的火花。
例如:"街心花园中圆形花坛的周长是18.84米。花坛的面积是多少平方米?"在教学中我采取尝试法先让学生独立解答、再集体交流。巡视时,我发现绝大多数同学想到了先求圆的半径,再求圆面积这种方法。可少数同学却列出了这样的式子:(18.84÷2)×(18.84÷3.14÷2)在集体交流时,大家讨论得很激烈,发现有些同学手举得很高。于是我就喊了其中一名同学,并听他讲起理由:"我是采用上一节课学习的推导圆面积公式的方法,将这个圆剪拼成一个长方形,这个长方形的长是圆周长的一半,即(18.84÷2),这个长方形的宽就是圆的半径即(18.84÷3.14÷2)。长方形的面积等于长乘宽,所以圆的面积就是(18.84÷2)×(18.84÷3.14÷2)。"
他们这种解法正是在完全领悟上一课圆面积推导公式的基础上得出的,且方法简洁明了。这些同学不就是我们班级的爱迪生吗?
事实证明,我们应该相信孩子的能力,只要我们在课堂中多尊重孩子的个性,多留给他们施展才华的机会和空间,他们定会迈出成功的一步。
3.为学生铺好"台阶",搭好诱导框架,引导学生"再创造"
我们的课堂要想出现"百家争鸣"、"百花齐放"的场面,仅仅学会尊重学生的个性是远远不够的。因为从小学生身心发展的情况来看,他们大多还不具备创造发明的知识基础,思维能力和实践能力比较差。所以在教学过程中教师要为学生创设探索情境,提出探索性问题,必要时要帮学生铺好"台阶",搭好诱导框架,学生在框架中"拾级而上",进而让学生"再创造"。
在简算18×18/19时,学生一时不知从何下手,教师可以出示练习题
1计算:12×11/12 15×14/15 19×18/19
2填空:11/12=1-( )/( ) 14/15=1-( )/( ) 18/19=1-( )/( )
3简算:18×18/19=(19-1)×18/19=(19-1)×18/19=18-18/19
第一题的练习使学生从"便于约分"这一角度得到启发。像这样让学生在教师设计的诱导框架下,利用自己已有的知识去探索、猜想、从而有所发现的教学尝试,是培养学生创造性思维的一种有效途径。
事实上,小学数学教材中,培养学生的创新意识和创造能力的内容很多,关键是教师要尊重学生的个性,要有培养学生创新能力的意识,深入研究教材既要紧扣教材,又要不拘泥于教材,精心设计问题,才能寓创新能力的培养于教学活动中,才能让孩子们自己的天空凸现一片绿。