巧变换,妙解题

2013-04-29 00:11:37张仁林
考试·综合 2013年6期
关键词:绕点对称点辅助线

张仁林

中图分类号:G633.6 文献标识码:B 文章编号:1006-5962(2013)06-0274-01

我们知道,在解有关几何图形的题目的时候,有些辅助线的添法是至关重要的,而利用图形变换来添加辅助线则是一个非常巧妙的方法。

1 利用平移变换添辅助线

例1. 正方形ABCD中,M是BC上任意一点,AM=10,

GH是AM的垂直平分线,求GH的长。

解:过点B作GH的平行线BE交DC于E(即平移GH),

则BE⊥AM,BE=GH

∴∠CBE+∠BMA=90°, 又∠BAM+∠BMA=90°

∴ ∠BMA=∠CBE

在△ABM 和△BCE中,

∠ABM=∠BCE=90°,∠BAM=∠CBE,AB=BC

∴BE=AM=GH=10.

2 利用轴对称变换添辅助线

当问题中含有角平分线或高线等,若以角平分线或高线为对称轴,

作轴对称变换,构造出全等三角形,常常有利于问题的解决。

例2. 如图△ABC 中,AD是∠BAC 的平分线,∠B=2∠C

求证:AC=AB+BD

證明:以∠BAC 的平分线AD为对称轴,则点B的对称点B' 必在AC上,由轴对称性质定理知:

∴AB=AB',BD=B'D,∠B=∠AB'D

又∠B=2∠C ,∠AB'D=∠C+∠B'DC

∴∠C=∠B'DC ∴B'D=B'C=BD

∴AC=AB'+B'C=AB+BD

例3. 如图, △ABC 中,AD是BC边上的高,∠B=2∠C

求证:DC=AB+BD

证明:以AD为对称轴,则点B的对称点B'必在BC上,

由轴对称性质定理知:

∴AB=AB',BD=B'D,∠B=∠AB'D

又∠B=2∠C ,∠AB'D=∠C+∠B'AC

∴∠C=∠B'AC,∴AB'=B'C=AB

∴DC=B'D+B'C=BD+AB

3 利用旋转变换添辅助线

当问题中有正三角形或正方形时,抓住特殊角,把某个图形绕某点旋转60°或90°,构造全等三角形图形,实现问题的转化,常常是解题的关键所在。

例4. 已知如图,正方形ABCD中,P、Q分别是BC、DC上的点,

若AQ平分 ∠DAP. 求证:PA=PB+DQ

证明:将△ADQ 绕A点按顺时针方向旋转90°到△ABE的位置,

由图形的旋转性质,得

∴∠2=∠3,∠ABE=∠D=90°,∠E=∠4, BE=DQ.

∵ 四边形ABCD为正方形, ∴∠ABE+∠ABC=180°,

∴ P、B、E三点共线。

∵ AB//DC, ∴∠5+∠1=∠4=∠E .

∵ ∠1=∠2, ∴∠5+∠3=∠5+∠2 =∠5+∠1=∠4=∠E

∴PA=PE=PB+BE=PB+DQ.

例5. 如图,P是等边△ABC内的一点,PA=3,PB=4, PC=5,

求 ∠APB的度数。

解:将△ABP绕点P逆时针旋转60°到△ACP' ,连接PP' ,

∴BP=CP'=4,AP=AP'=3,∠APB=∠AP'C

又 ∠PAP'=60°,

∴△APP' 是等边三角形, ∴∠APP' =60°,PP'=AP=3

在△APP' 中,PP'=3 ,P'C=4,PC=5

∴PC2=P'P2+P'C2,

∴∠PP'C=90°,

∴ ∠APB=∠AP'C =∠AP'P+∠PP'C=60°+90°=150°.

例6. 如图,点P是正方形内一点,PA=1, PB=2, PC=3,

求∠APB 的度数.

解:将△ABP 绕点P逆时针旋转90°到△CBP' ,连接PP' ,

则 ∠ABP=∠CP'B,∠PBP'=90°

∴AP=CP'=1,BP'=BP=2

∴PP'=BP'+BP2=22, ∠BPP'=∠BP'P=45°,

在 △PP'C 中,PP'= 22,P'C=1 , PC=3

∴PC2=P'P2+P'C2 ,∴∠PP'C=90°

∴∠APB =∠CP'B=∠BP'P+∠PP'C=45°+90°=135°

正图形的变换,通常是指对图形进行折叠、平移、旋转等.在解题过程中,若能注意变换图形,往往会收到"柳暗花明又一村"的效果一、折叠变换例1如图1,ΔABC中,∠BAC=90°,AB=AC,∠ABC的平分线交AC于D,过C作BD的垂线交BD的延长线于E.你能用所学的知识说明BD是CE的2倍。

解题笔记: 在解类似问题时,应从实际出发,结合图形的特点,通过图形的旋转、平移或轴对称将几个互不相关的量(及分散的条件和结论)联系起来是解题之关键。

猜你喜欢
绕点对称点辅助线
怎样添辅助线证全等
九点圆圆心关于三边的对称点的性质
中等数学(2021年1期)2021-07-23 01:41:00
两种重要的辅助线
浅谈辅助线在数控切割中的应用
线性代数中矩阵特征值的解析方法
《旋转》单元测试题(二)
2016年“全等三角形”中考题掠影
利用对称求函数的解析式
南师大第二附属初级中学“全等三角形”测试卷
Have Fun with Math