巧设情境 化难为易

2013-04-29 11:52刘金文
关键词:分析问题解决问题小学数学

刘金文

摘 要:在小学第二学段的数学教学中,学生开始接触到一些有难度的问题。教师应合理、正确地引导学生如何面对自己认为比较复杂的问题,并通过设计情景,使复杂问题通过合理分析,分解成为简单的小问题,达到问题简化与解决的目的。

关键词:小学数学;设计情景;分析问题;解决问题

中图分类号:G623.5 文献标识码:A 文章编号:1009-010X(2013)01-0075-02到小学中年级,学生开始接触到一些有难度的问题。这个学段也是数学由“一些简单的、直接的”素材向“较为复杂的、间接的”过渡阶段,这个学段的学生对数学知识也由感性认识向理性认识过渡。思维也由形象直觉思维为主逐渐转向抽象逻辑思维为主。在这个过程中,学生在原来的基础上对数学已有了一定的了解,掌握了一些简单的数学知识和技能,逻辑思维能力也得到了初步的发展,对数学问题也有了一定的认识。同时,学生也开始接触到一些有难度的问题。

面对这些问题,可能会使有些学生产生一些想法,认为到了高年级,数学问题会变得特别复杂,甚至对学习数学产生恐惧心理,影响学好数学的自信心。这个时候,教师应合理、正确地引导学生如何面对自己认为比较复杂的问题。

数学学习的一个主要目标就是要培养学生的一般能力,即分析问题和解决问题的能力,其中,思维能力是核心。分析问题即把问题进行解读、分解分化、剖析,找出问题的实质所在。其目的就是要把一个看似很复杂的问题分解成为若干个比较容易解决的、简单的小问题,然后再解决问题。

一、通过设计情景,把问题与社会活动联系在一起

如,小学四年级(上)“问题与思考”第13题:

一张餐桌和四把椅子共620元,一张餐桌和六把椅子共780元。求一张餐桌和一把椅子的单价。

问题中,既没有餐桌的价格,也没有椅子的价格,只有不同数量的餐桌和椅子的总价。即已知的条件和所要求的结果之间并没有直接的联系。作为刚步入第二学段的小学生来说,不太容易找出已知的条件和所要求的结果之间的联系。

面对这个问题,教师可以这样向学生创设情景,让看似复杂的问题在真实情境面前被分解成为几个简单的、直接的小问题。

有人到家具店去买一张餐桌和六把椅子,售货员告诉他总价是780元,结果他所带的钱不够。售货员先让他买走其中的一部分,有一张餐桌和四把椅子,也就先收一张餐桌和四把椅子的价钱,是620元。当学生进入情境之后,教师再和学生一起探讨问题。

首先要向学生提问,这个人本来要买一张餐桌和六把椅子,为什么没有买够?这时,学生就能立刻说出,是因为钱不够。再向学生提问,少买了什么,又少付了多少钱?学生也很快回答,少买了两把椅子(6-4=2),少付了160元(780-620=160)。然后再问,这说明了两把椅子多少钱?学生很快就能算出,每把椅子的价钱:160÷2=80(元),这时,怎样再用不同的方法求餐桌的价钱,就显而易见了。

计算过程如下:

(780-620)÷(6-4)

=160÷2

=80(元)

620-80×4

=620-320

=300(元)

答:每把椅子80元,每张餐桌300元。

二、定位角色,在模拟真实情境中感受到解决数学问题就是解决社会实际问题

如,小学四年级(上)“问题与思考”第15题:

上衣和裙子(各一件)共80元,上衣和裤子(各一件)共73元,裙子和裤子(各一件)共67元。求上衣、裤子和裙子的单价。

问题中有三个已知条件,都是三件中两件一共的价格,没有单独某一件衣服的价格,也没有三件衣服一共的价格,即已知条件与要求的结果之间也是没有直接的联系,同样也不容易找到间接的联系。这时,教师不仅要设计一个真实的情境,还要给学生安插一个重要的角色。这样更能让学生感同身受,在身临其境的过程中自己找出问题的已知与要求的结果之间的联系。

服装店里来了三个女孩,第一个女孩要买一件上衣和一条裙子,第二个女孩要买一件上衣和一条裤子,第三个女孩要买一条裙子和一条裤子。售货员给她们算好了价钱,她们分别需要付80元、73元和67元。但是,店里有规定,由于一件上衣、一条裙子和一条裤子是一套服装,包装在一个盒子里,不分开出售。而每一个女孩都想买到自己需要的衣服,又不想多买。

把学生引入问题的情景后,紧接着向学生提问,如果你是售货员,怎样做既能满足三个女孩的需要,又不违反店里的规定?

这时,就会有不少学生能够想到她们三个人买的衣服合起来每种各两件,正好两套。可以让她们三人合买两套,然后由她们自己再分。这样,既不违反店里的规定,又能满足她们。

将学生引入情景后,紧接着就要与所要解决的问题联系。她们合买两套共用了多少钱?每套多少钱?这时,学生很容易看出,合买两套共用80+73+67=220(元)。一套的价钱就是220÷2=110(元)。然后就要引导学生得出问题的结果。

第一个女孩只买了上衣和裙子,少买一条裤子,所以比买一套少用一条裤子的价钱。这样,裤子的价钱就显而易见,110-80=30(元)。这时,只要求出其中一件的价钱,就很容易用不同的方法求出另外两件的价钱。

三、模拟真实情境,引导学生一步步进入问题情境

如,为了响应国家植树造林的号召,某学校几位教师和几个少先队员共22人利用节假日去义务植树。按照规定,成年人每人植树8棵,未成年人每人植树5棵。工作人员按规定发给了他们128棵树苗。参加植树的老师和学生各有几人?

看到这个问题,可能会想到列方程设未知数。问题中有两个要求的未知量,学生又处在小学阶段,不可能设两个未知数,即使用含有未知数的式子表示另一未知量,其过程也会很复杂。对此,可以这样设计一个情境,让问题的情境发生在学生自己的身上,让学生感同身受。引导学生从问题的已知条件出发,一步步进入问题,自己在问题情境中找出已知条件与所要求的未知量之间的联系。

读完题后,教师随后在问题后补充设计情境。按规定学生每人植树5棵。这些学生虽然年龄小,但是很热心公益事业。他们说,平时我们坚持参加体育锻炼,身体很好,能够和老师一样,也每人植树8棵。工作人员为了不打击学生们的积极性,决定再给一些树苗,让他们也植树8棵。这时,再向学生提出问题:

如果学生和老师一样,也植树8棵,那么,工作人员实际发给老师和学生多少棵树苗?

22×8=176(棵)

原来按规定只发了128棵,后来补发了多少棵?

176-128=48(棵)

原来按规定学生每人发了5棵,后来学生要求发8棵,每人补发了多少棵?

8-5=3(棵)

学生一共有多少人?

48÷3=16(人)

老师共有多少人?

22-16=6(人)

对这几个问题的分析过程表明:看似很复杂的数学问题,只要抓住问题的关键,充分把握学生的心理,根据学生当前的知识能力水平,巧妙设计内容丰富、生动有趣的问题情境,就能使分析过程恰当,调动学生学习的积极性,把复杂的“大问题”分化成几个简单的“小问题”,然后再加以解决。这样,不仅提高学生的思维水平,启发学生在遇到问题时要联系社会实际。更重要的是增进学生学习数学、面对数学问题,尤其是有些难度的问题时的自信心。

猜你喜欢
分析问题解决问题小学数学
联系实际 解决问题
助农解决问题增收致富
在解决问题中理解整式
化难为易 解决问题
试论在拖动电路安装实训中提高学生识图能力的方法
农村学校数学生活化教学探析
培养学生自主探究能力的策略研究
体验式学习在数学教学中的应用研究
培养数学意识发展思维能力的研究
浅谈“数学‘问题解决’有效性研究”