王其文,黄心中
(华侨大学 数学科学学院,福建 泉州362021)
近年来,对单叶调和函数成为调和拟共形映照问题的研究引起了不少学者的关注[4-10],也得到了不少有趣的结果.
在区间(0,1)内的最小正根.
注3 令b1=0,应用定理2后得到的结果改进了定理4.
3)当α=0,β=0,γ=C时,同理可得到定理5的结果.
[1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Uspekhi Mat Nauk,1948,3(2):216-219.
[2] BSHOUTY D,LYZZAIK A.Problems and conjectures in planar harmonic mappings[J].J Analysis,2010,18:69-81.
[3] CLINIE J,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Math,1984,9:3-25.
[4] PAVLOVIC M.Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J].Ann Acad Sci Fenn Math,2002,27:365-372.
[5] KALAJ D,PAVLOVIC M.Boundary correspondence under harmonic quasiconformal diffeomorphisms of a half plane[J].Ann Acad Sci Fenn Math,2005,30:159-165.
[6] 黄心中.单位圆盘上的调和拟共形同胚[J].数学年刊,2008,29A(4):519-524.
[7] 朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报:自然科学版,2011,32(6):705-709.
[8] CHEN S,PONNUSAMY S,WANG X.Coefficient estimates and Landou-Bloch′s constant for planar harmonic mappings[J].Bull Malaysian Math Science Soc,2011,34(2):255-265.
[9] DORFF M,NOWAK M.Landau′s theorem for planar harmonic mappings[J].Comput Methods Funct Theory,2004,4(1):151-158.
[10] LIU Ming-sheng.Landau′s theorem for planar harmonic mappings[J].Computers and Mathe-Matics with Applications,2009,57:1142-1146.