复旦大学附属肿瘤医院化疗科,复旦大学上海医学院肿瘤学系,上海200032
EGFR TKIs在非小细胞肺癌中的耐药机制及治疗进展
王珊珊 综述 常建华 审校
复旦大学附属肿瘤医院化疗科,复旦大学上海医学院肿瘤学系,上海200032
吉非替尼和厄洛替尼是表皮生长因子受体(epidermal growth factor receptor,EGFR)酪氨酸激酶抑制剂(tyrosine kinase inhibitors,TKIs),广泛用于非小细胞肺癌的治疗。但随着应用的深入,耐药问题开始凸显。过去几年,针对继发性耐药和原发性耐药的深入研究,发现EGFR二次突变,MET基因扩增,K-ras基因突变等是EGFR TKIs耐药的主要原因。本文就EGFR-TKIs原发耐药与继发耐药的机制,以及克服此类耐药的新型药物及其临床试验数据作一综述。
耐药;突变;信号通路;治疗
肺癌是现代社会癌症致死的主要原因,其中非小细胞肺癌(non-small cell lung cancer,NSCLC)约占80%。靶向药物通过阻滞介导肿瘤生长和进展的各条通路分子,控制了肿瘤细胞中优先激活的通路分子,相比通过对细胞发生毒害作用的化疗药物更有针对性,不良反应也更小,已广泛应用于一线或二线治疗[1]。但很多患者对靶向治疗不敏感,并且容易发生耐药,此类药物并没有表现出很好的生存优势,中位有效期只有1年[2]。因此,研究靶向药物耐药成为了肿瘤治疗的重要任务。
受体酪氨酸激酶(receptor tyrosine kinases,RTKs)是一类跨膜蛋白,表现为配体控制的蛋白酪氨酸激酶活性,这些酶类的适当激活保持了细胞的稳定性,而异常激活则会驱动致癌基因激活。RTK家族主要包括表皮生长因子受体(epidermal growth factor receptor,EGFR)、MET、胰岛素样生长因子结合蛋白-1(insulin-like growth factor 1-R,IGF1-R)、血管内皮生长因子受体(vascular endothelial growth factor receptor,VEGFR)等,其中EGFR家族得到了广泛的研究。EGFR的酪氨酸激酶区域是调节肿瘤细胞增殖、侵袭、血管生成、粘附、转移和凋亡的重要组成部分。EGFR与配体结合后导致EGFR自体及异体二聚化和胞内区磷酸化,触发K-ras-BRAF-MEKERK/MAPK或者PIK3CA-AKT-mTOR等通路,从而调控上述一系列肿瘤生物学行为。吉非替尼与厄洛替尼是可逆性的EGFR酪氨酸激酶抑制剂(epidermal growth factor receptor tyrosine kinase inhibitors,EGFR-TKIs),与EGFR结合后抑制EGFR及其下游通路。目前已知的引起耐药的原因有原发性耐药:K-ras基因突变,BRAF基因突变,PTEN失活等;继发性耐药:如EGFR二次突变,MET基因扩增,肝细胞生长因子过表达,HER-2过表达,IGF1-R过表达等。
1.1 T790M二次突变
2005年日本学者对1例接受吉非替尼治疗完全缓解后复发的肺腺癌标本进行基因检测,发现了EGFR 20号外显子790位突变[3]。据报道T790M突变约占EGFR TKIs获得性耐药的50%[4]。近来研究结果显示T790M突变发生率可能更高,一项重新活检试验结果为68%[5]。目前T790M二次突变造成TKIs药物耐药的原因还未完全明确。晶体结构模型显示T790M突变位于ATP激酶域的连接口袋处,此位置是EGFR与厄洛替尼和吉非替尼结合的关键位置。T790M位点的甲硫氨酸置换苏氨酸后形成了大量残基,其产生的空间位阻阻止了EGFR与药物的结合,这可能是耐药的原因之一[6]。另一项研究认为ATP结合力增加是T790M导致耐药的重要原因,T790M突变通过增加EGFR和ATP的结合力,相对减弱了EGFR与EGFR-TKIs的结合力,从而产生了耐药[7]。目前认为T790M突变不但是TKIs药物耐药的原因,也是致癌突变,其可以通过提高磷酸化水平介导肿瘤细胞生长。与没有T790M突变的患者相比,发生T790M突变的患者无进展生存期(progressionfree survival,PFS)更短[7.7个月(T790M组) vs 16.5个月(EGFR野生型组),P<0.001][8]。但最新研究显示,对已接受过EGFR-TKIs治疗的NSCLC患者来说,T790M突变是较短PFS的独立预测因子[9]。在EGFR TKIs耐药的患者中,T790M突变患者比其他原因引起耐药的患者有相对更好的预后,病程发展较慢,进展后生存期更长,且未受累器官更不易发生转移[10]。
1.2 MET基因扩增
MET作为受体酪氨酸激酶家族成员,是一种具有自主磷酸化活性的跨膜受体,胞外区识别并结合肝细胞生长因子(hepatocyte growth factor,HGF),而胞内区具有酪氨酸激酶活性。MET基因会导致多种与肿瘤发生发展相关的生物学反应,目前已知多种恶性肿瘤都与MET异常表达有关,并与不良预后及转移侵袭相关[11]。MET在正常组织中表达较低,但在NSCLC中常常过表达,其基因扩增发生率在NSCLC中为4%~10%[12]。Engelman等[13]发现,MET基因扩增可能介导EGFR-TKI耐药。其利用19号外显子敏感突变的NSCLC细胞持续暴露在吉非替尼中得到耐药细胞株HCC827,在此细胞系中,ErbB3-PI3K-Akt 通路发生持续激活,并出现了染色体7q臂上MET基因出现的局部扩增。因此推测由于MET扩增导致了ERBB3的持续磷酸化,即使EGFR-TKI抑制了EGFR/ ERBB3二聚体中的EGFR,下游通路PI3K/Akt仍然可以被磷酸化的ERBB3持续激活,从而维持肿瘤生长,介导耐药。除MET基因扩增之外,MET基因的体细胞突变也有相关报道,发生率约为5%[14]。
HGF是MET的配体,HGF与MET结合后可发生自身磷酸化,导致多种底物蛋白磷酸化,从而发挥多种生物学功能。Turke等[15]报道,HGF过表达是EGFR-TKIs的耐药机制之一。研究者用HGF处理EGFR敏感突变的细胞系后发现,HGF诱导的吉非替尼耐药是剂量依赖模式的,即HGF表达越多,耐药性就越强。细胞通路分析显示,HGF过表达后使MET磷酸化,从而维持了PI3K-Akt信号通路的活性。有趣的是,虽然MET基因扩增通过ERBB3激活下游通路,HGF作为配体激活MET下游通路时却不依赖EGBB3或EGFR,而是通过下游的适配蛋白1(adaptor protein 1,Gab1)来激活PI3K。
1.3 K-ras突变
K-ras是一种原癌基因,位于12号染色体,是RAS基因家族成员之一,编码K-ras蛋白,与肿瘤的生成、增殖、迁移、扩散以及血管生成均有关。当K-ras基因发生突变时,通过激活信号通路中的下游分子Raf、Mek等引起细胞增殖。Lievre等[16]发现,K-ras突变无需EGFR配体诱导,不通过EGFR通路即可激活Raf/ MAPK。Pao等[17]在38例TKI耐药的肿瘤样本中检测到了9例(24%)存在K-ras突变(无EGFR突变),突变者服用EGFR-TKI药物都无效,这提示K-ras基因突变与吉非替尼的耐药有关。之后其他学者的研究也证实了K-ras是原发耐药的重要原因,并发现与EGFR突变为互斥性突变[18]。Marchetti等[19]进一步研究后发现,虽然K-ras突变的发生率很低,但却很容易造成EGFR-TKIs的耐药,说明将来用高敏感性检测方法对患者进行基因分型是非常有必要的。
1.4 BRAF突变
K-ras的下游通路蛋白中研究最广泛的是BRAF(RAF蛋白亚型),位于RAS-RAF-MEKERK信号通路中。在结直肠癌中,已经确定BRAF体细胞突变是EGFR靶向药物耐药的原因,但是由于BRAF在NSCLC中发生率低(据报道为3%),所以目前针对耐药的数据还很少[20]。针对1 046例NSCLC患者的BRAF基因检测发现,BRAF V600E突变在女性中的发生率较高(8.6%),并且无病生存时间和总生存率都较短[21]。日本学者报告了1例服用吉非替尼完全缓解的患者,基因检测未发现EGFR突变,却检测到了BRAF V740F突变[22-23]。一系列研究显示,应用抗BRAF药物如PLX4032/RG7204、AZD6244(ARRY-142886)和索拉非尼(Sorafenib)对BRAF突变患者的应答率都比野生型的应答率高[24-26]。
1.5 PTEN失活
PTEN(蛋白酪氨酸磷酸酶基因)编码的蛋白质具有脂质磷酸酶和蛋白磷酸酶活性,发挥双重肿瘤抑制功能。某研究者检测了吉非替尼耐药细胞系,发现PTEN表达显著下降,在逆转的敏感细胞系中重又恢复了活性。使用基因沉默技术敲除PTEN基因后导致了细胞系对吉非替尼和厄洛替尼的耐药。实验中还观察到调控PTEN表达的EGR1转录蛋白的核转运在耐药株中被抑制,而在逆转株中则有活性。这提示PTEN失活是吉非替尼和厄洛替尼的耐药的原因之一[27]。mTOR是PI3K/Akt 信号通路下游的效应分子,活化后发挥癌基因的作用。PTEN的作用是抑制PI3K/Akt 通路及抑制mTOR 蛋白活化,当PTEN发生突变或低表达后,抑癌作用显著减低,这就导致了EGFR-TKIs的耐药[28]。一项研究对93例吉非替尼治疗的NSCLC患者进行了PTEN检测,发现有19例缺失(20.4%),并未发现与客观反应率、治疗失败时间或存活状态之间的联系[29],但已证实PTEN失活在NSCLC靶向治疗中是不良预后分子[30]。
1.6 IGF1-R高表达
IGF1-R是一种跨膜蛋白,其在促进癌基因转换及癌细胞生长和生存中起着重要作用。IGF1-R激活触发了两条信号转导通路:Ras-Raf/MAPK及PI3K-Akt。通过细胞系研究后发现IGF1-R高表达造成的耐药是通过PI3K-Akt通路完成的[31-32]。有的研究还显示NSCLC患者中EGFR基因表达水平较高,相应地也伴随着IGF1-R的高表达,引起肺癌患者对EGFR-TKI的继发性耐药。Marta等[33]针对耐药进一步研究后发现,吉非替尼耐药细胞中表现出IGF-连接蛋白3(IGFBP-3)显著减少,这会解除IGF1-R通路的抑制,但却使EGFR抑制剂出现了耐药。
1.7 上皮间质转化
上皮间质转化(epitheilal-mesenchymal transition,EMT)是肿瘤进展、转移中的重要过程,与细胞黏连蛋白(如E-钙黏素)的下调或纤连蛋白等的上调有关。发生EMT的肿瘤细胞通过自发、侵袭性的外渗活动开始发生转移[34-35]。有试验证实IGF1-R可以促进EMT的发生,并通过E-钙黏素下调来介导[36]。一旦这些上皮细胞转化到间质状态,就不再依赖于IGF1-R,这提示EGFR-TKI和IGF1-R抑制剂可以抑制未完成转化的肿瘤细胞增殖[37]。除此之外,EGFR常在上皮化的肿瘤细胞中异常表达,并且在EMT转换中起重要作用。一项研究显示,E-钙黏蛋白染色更深的肿瘤细胞的肿瘤进展时间(time to progression,TTP)会延长,进行厄洛替尼联合化疗药物与单用化疗药物治疗后对比,总生存时间也延长了。
2.1 不可逆EGFR-TKIs
吉非替尼与厄洛替尼是可逆性的EGFRTKIs制剂,也称为第一代EGFR-TKIs。目前靶向药物已发展到克服第一代靶向药物耐药的不可逆性EGFR-TKIs制剂(第二代EGFR TKIs药物)。与可逆性EGFR-TKIs相比,不可逆性EGFR-TKIs具有多个靶点,耐药发生的可能性也较小。许多正在临床开发阶段的不可逆EGFR-TKIs,可以抑制EGFR受体家族的多个成员。目前其作用原理还不十分明确,机制之一是相对可逆性EGFR TKIs来说,不可逆性TKIs对EGFR激酶域表现出更高的亲和力,并对ERBB通路有更长的抑制作用。其次,第二代EGFR TKIs可以抑制HER-2靶点,某些药物甚至是泛ERBB家族抑制剂,这就会对EGFR通路产生更加完全的抑制作用。此外,体外研究显示不可逆性TKIs还表现出对T790M基因及其他某些基因的抑制作用,而T790M正是耐药原因中最为普遍的因素。
阿法替尼(Afatinib,BIBW 2992)是EGFR/ HER-2双靶点抑制剂,并且可以作用于T790M突变。LUX-LUNG试验是对阿法替尼进行的一系列研究,确定了阿法替尼的药物最大耐受剂量为50 mg/d[38-39]。在LUX-LUNG 1中,研究者观察了化疗进展后接受厄洛替尼/吉非替尼治疗的患者服用阿法替尼或安慰剂后的PFS,结果显示阿法替尼组比安慰剂组的PFS显著延长(3.3个月 vs 1.1个月;HR=0.38;P<0.000 1)[40]。LUXLUNG 2是观察化疗失败后复发或未接受过化疗的患者服用阿法替尼的疗效,其结果中位生存期为12个月,总体应答率(ORR)为62%,疾病控制率(DCR)为92%[41]。目前已得到的结果显示阿法替尼在逆转耐药方面有一定的优势。
Dacomitinib(PF-00299804)是第二代泛-ERBB抑制剂(靶点为HER-1/HER-2/HER-4),实验结果显示其在吉非替尼耐药细胞系及表达T790M和HER-2突变的裸鼠中有作用,但对于表达K-ras突变的肿瘤细胞无效[42]。前期研究结果显示Dacomitinib对于吉非替尼原发性或继发性耐药的NSCLC均显示出潜在的抗肿瘤活性。另一个在早期临床试验阶段的不可逆抑制剂是Neratinib(靶点为HER-1/HER-2),尽管临床前研究结果让人充满期待,但在临床研究中却只表现出较低的活性,因此在非小细胞肺癌中的研究暂时搁置[43]。
2.2 多药联合策略
在肺癌中,Met基因扩增和突变都会导致Met通路激活,此通路与耐药密切相关,因此寻找MET与EGFR的共同抑制是非常必要的[44]。MetMAb是MET单克隆抗体,作用于MET受体胞外区,阻滞HGF介导的受体活性。在一项研究厄洛替尼联合MetMAb与安慰剂对照的试验中,MET过表达的患者明显受益于联合治疗组,PFS和OS都有所提高,但未携带MET过表达的患者对MetMAb联合厄洛替尼治疗表现不佳[45]。Tivantinib 是一种新型的选择性c-MET 抑制剂。厄洛替尼联合Tivantinib对照厄洛替尼联合安慰剂的试验中,Tivantinib组的中位PFS为16.1周,明显优于安慰剂的9.7周。34例厄洛替尼治疗失败的患者交叉至厄洛替尼联合Tivantinib治疗组,2例达到PR,9例达到SD。其中2例PR 患者均有c-Met 扩增,说明c-Met小分子抑制剂对TKIs 治疗失败的患者是有效的[46]。除了将MET靶点与EGFR靶点联合治疗外,还有其他的联合治疗策略,如EGFR与VEGFR抑制剂联合应用在临床试验中显示比EGFR抑制剂单药或者VEGFR抑制剂单药治疗效果更好[47]。
TKIs药物作用于受体细胞内区域,而单克隆抗体作用于受体细胞外区域,联合两类药物可以同时抑制受体的胞内区和胞外区,这种联合治疗方式称为垂直抑制。试验数据显示这或许可以成为克服耐药的新策略。此概念是在一项乳腺癌试验中首次提出的:拉帕替尼(EGFR/ HER-2双靶点抑制剂)与曲妥珠单抗(HER-2单克隆抗体)联合治疗对比阿帕替尼单药治疗曲妥珠单抗治疗后进展的患者,联合治疗组患者的PFS显著长于单药治疗组。在NSCLC的此类试验中,使用携带T790M NSCLC的裸鼠肿瘤模型,观察到阿法替尼与西妥昔单抗联合治疗后肿瘤也同样发生了明显退缩[48]。另一项阿法替尼与西妥昔单抗联合治疗的试验中,30%患者达到PR,入组的22例患者病情都有所控制[49]。
吉非替尼与厄洛替尼的交换治疗或许是T790M突变患者耐药的一个解决途径。吉非替尼与厄洛替尼的标准药物剂量不同,厄洛替尼在体内更不容易被代谢,因此可以在较低浓度时就抑制野生型EGFR基因的活性[50-51]。目前的几项研究提示,EGFR野生型患者或对吉非替尼治疗有反应的患者可能会从EGFR TKIs交换疗法中获益。但是所有的交换疗法的临床试验结果没有达成一致。原因之一可能是患者群体的异质性,不同的恶性细胞携带不同的EGFR突变,使得对EGFR TKIs药物的敏感性也不同。
近来对癌基因成瘾性(oncogene addiction)的研究逐渐受到关注,即某些肿瘤细胞的生存对特定的癌基因高度依赖,癌基因活性较低则影响肿瘤细胞的生存。由于癌基因成瘾性的现象,应用靶向药物持续抑制特定的癌基因在治疗中是很重要的。一项研究提出如果在TKIs药物中加入化疗药物,在持续抑制靶点的同时利用化疗药物杀灭不依赖EGFR突变的肿瘤细胞,观察联合治疗的疗效:联合紫杉醇与吉非替尼治疗已接受过吉非替尼治疗并进展的患者,得到的中位PFS和OS分别为4.3个月和8.1个月,疾病控制率为75%,说明接受单药EGFR-TKIs治疗后进展的患者可能会对联合化疗药物受益。在一项随机Ⅱ期临床试验中,一线使用厄洛替尼联合卡铂/紫杉醇对照厄洛替尼单药治疗NSCLC患者,两组的PFS虽然没有差异,但单药组与联合治疗组的OS分别为39.0个月及31.3个月,虽然结果在统计学上没有意义,但差距8个月的OS时间为下一步临床试验提供了信心[52]。同样基于癌基因成瘾性概念,在另一项大规模对比试验中(LUX-LUNG 5),阿法替尼单药序贯阿法替尼联合紫杉醇对比化疗治疗厄洛替尼/吉非替尼/化疗治疗失败的ⅢB/Ⅳ NSCLC患者,预计入组1 100例患者,主要研究结果为PFS,研究结果还需进一步等待。
EGFR是治疗NSCLC的有效靶点,第一代EGFR-TKIs虽然在临床试验取得了很好的疗效,但其却不可避免地出现了耐药问题。目前在克服耐药方面已有了较多进展,如研发第二代不可逆EGFR TKIs药物,多种靶向药物联合应用,靶向药物与化疗药物联合应用等都取得了良好的效果。目前许多新研究的靶向药物都已进入了临床试验阶段,结果也很令人振奋,阿法替尼、MetMAb等都是值得期待的靶向药物,但这些新型靶向药物在耐药中的作用还需要更进一步的研究。同时我们还应注意到不可逆抑制剂也出现了耐药的问题,因此秉承严谨创新的科学精神进一步研究,才能早日攻克肿瘤这个世界性难题。
[1] PALLIS A G, SERFASS L, DZIADZIUSKO R, et al. Targeted therapies in the treatment of advanced/metastatic NSCLC[J]. Eur J Cancer, 2009, 45: 2473-2487.
[2] BASELGA J. The EGFR as a target for anticancer therapy: focus on cetuximab [J]. Eur J Cancer, 2001, 37 (Suppl 4): 16-22.
[3] KOBAYASHI S, BOGGON T J, DAYARAM T, et al. EGFR mutation and resistance of non-small cell lung cancer to gefitinib [J]. N Engl J Med, 2005, 352: 786-792.
[4] MA C, WEI S, SONG Y. T790M and acquired resistance of EGFR TKI: a literature review of clinical reports [J]. Thorac Dis, 2011, 3(1): 10-18.
[5] ARCILA ME, OXNARD GR, NAFA K, et al. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay [J]. Clin Cancer Res, 2011, 17(5): 1169-1180.
[6] INUKAI M, TOYOOKA S, ITO S, et al. Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer [J]. Cancer Res, 2006, 66: 7854-7858.
[7] YUN C H, MENGWASSER K E, TOMS A V, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP [J]. Proc Nat Acad Sci USA, 2008, 105(6): 2070-2075.
[8] MAHESWARAN S, SEQUIST L V, NAGRATH S, et al. Detection of mutations in EGFR in circulating lung-cancer cells [J]. N Engl J Med, 2008, 359: 366-377.
[9] SU K Y, CHEN H Y, LI K C, et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer [J]. Clin Oncol, 2012, 30(4): 433-440.
[10] OXNARD G R, ARCILA M E, SIMA C S, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation [J]. Clin Cancer Res, 2011, 17: 1616-1622.
[11] LIU X, NEWTON R C, SCHERLE P A. Development of c-MET pathway inhibitors. [J]. Expert Opin Investig Drugs, 2011, 20: 1225-1241.
[12] CAPPUZZO F, MARCHETTI A, SCIARROTTA M G, et al. Increased MET gene copy number negatively affects survival of surgically resected non-small cell lung cancer patients[J]. J Clin Oncol, 2009, 27: 1667-1674.
[13] ENGELMAN J A, ZEJNULLAHU K, MITSUDOMI T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling [J]. Science, 2007, 316(5827): 1039-1043.
[14] ONOZATO R, KOSAKA T, KUWANO H, et al. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers[J]. J Thorac Oncol, 2009, 4: 5-11.
[15] TURKE A B, ZEJNULLAHU K, WU Y L, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC [J]. Cancer Cell, 2010, 17(1): 77-88.
[16] LIEVRE A, BACHET J B, BOIGE V, et al. K-ras mutations as an independent prognostic fact or in patients with advanced colorectal cancer treated with cetuximab [J]. J Clin Oncol, 2008, 26(3): 374-379.
[17] PAO W, WANG T Y, RIELY G J, et al. K-ras mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib [J]. Plos Med, 2005, 2(1): 17.
[18] LINARDOU H, DAHABREH I J, BAFALOUKOS D, et al. Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC [J]. Nat Rev Clin Oncol, 2009, 6: 352-366.
[19] MARCHETTI A, MILELLA M, FELICIONI L, et al. Clinical implications of KRAS mutations in lung cancer patients treated with tyrosine kinase inhibitors: an important role for mutations in minor clones [J]. Neoplasia, 2009, 11: 1084-1092.
[20] DAVIES H, BIGNELL G R, COX C, et al. Mutations of the BRAF gene in human cancer [J]. Nature, 2002, 417: 949-954.
[21] MARCHETTI A, FELICIONI L, MALATESTA S, et al. Clinical Features and outcome of patients with non-smallcell lung cancer harboring braf mutations [J]. J Clin Oncol, 2011, 29(26): 3574-3579.
[22] KOZUKI T, KIURA K, UEOKA H, et al. Long-term effect of gefitinib (ZD1839) on squamous cell carcinoma of the lung[J]. Anticancer Res, 2004, 24: 393-396.
[23] TOYOOKA S, UCHIDA A, SHIGEMATSU H, et al. The effect of gefitinib on B-RAF mutant non-small cell lung cancer and transfectants [J]. J Thorac Oncol, 2007, 2: 321-324.
[24] SHEPHERD C, PUZANOV I, SOSMAN J A. B-RAF inhibitors: an evolving role in the therapy of malignant melanoma [J]. Curr Oncol Rep, 2010, 12: 146-152.
[25] BOARD R E, ELLISON G, ORR M C, et al. Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phaseⅡ study [J]. Br J Cancer, 2009, 101: 724-1730.
[26] TAKEZAWA K, OKAMOTO I, HATASHITA E, et al. Sorafenib inhibits non-small cell lung cancer cell growth by targeting B-RAF in KRAS wild-type cells and C-RAF in KRAS mutant cells [J]. Cancer Res, 2009, 69: 6515-6521.
[27] YAMAMOTO C, BASAKI Y, KAWAHARA A, et al. Loss of PTEN expression by blocking nuclear translocation of EGR1 in gefitinib-resistant lung cancer cells harboring epidermal growth factor receptor-activating mutations[J]. Cancer Res, 2010, 70(21): 8715-8725.
[28] VIVANCO I, ROHLE D, VERSELE M, et al. The phosphatase and tensin homolog regulates epidermal growth factor receptor (EGFR) inhibitor response by targeting EGFR for degradation[J]. Proc Natl Acad Sci U S A, 2010, 107: 6459-6464.
[29] LINARDOU H, DAHABREH I J, BAFALOUKOS D, et al. Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC [J]. Nat Rev Clin Oncol, 2009, 6: 352-366.
[30] TANG J M, HE Q Y, GUO R X, et al. Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis [J]. Lung Cancer, 2006, 51: 181-191.
[31] CAPPUZZO F, TOSCHI L, TALLINI G, et al. Insulin-like growth factor receptor 1 (IGFR-1) is significantly associated with longer survival in non-small-cell lung cancer patients treated with gefitinib [J]. Ann Oncol, 2006, 17: 1120-1127.
[32] PAO W, MILLER V A, VENKATRAMAN E, et al. Predicting sensitivity of non-small-cell lung cancer to gefitinib: is there a role for P-Akt? [J]. J Natl Cancer Inst, 2004, 96: 1117-1119.
[33] MARTA G, ANTHONY C F, SHIZHEN E W, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins [J]. J Clin Invest, 2008, 118(7): 2609-2619.
[34] PEINADO H, OLMEDA D, CANO A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? [J]. Nat Rev Cancer, 2007, 7: 415-428.
[35] MAEDA M, JOHNSON K R, WHEELOCK M J. Cadherin switching: essential for behavioral but not morphological changes during an epithelium-tomesenchyme transition [J]. J Cell Sci, 2005, 118: 873-887.
[36] KIM H J, LITZENBURGER B C, CUI X, et al. Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-tomesenchymal transition mediated by NF-kappaB and snail[J]. Mol Cell Biol, 2007, 27: 3165-3175.
[37] MORGILLO F, WOO J K, KIM E S, et al. Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib [J]. Cancer Res, 2006, 66: 10100-10111.
[38] MURAKAMI H, et al. Phase Ⅰ study of continuous afatinib (BIBW 2992) in patients with advanced non-small cell lung cancer after prior chemotherapy/erlotinib/gefitinib (LUX-Lung 4)[J]. Cancer Chemother Pharmacol, 2012. 69(4): 891-899.
[39] ATAGI S, KATAKAMI N, HIDA T, et al. LUX-Lung 4: a phase Ⅱ trial of afatinib (BIBW 2992) in advanced NSCLC patients previously treated with erlotinib or gefitinib[C]. The 14th Biennial World Conference on Lung Cancer, Amsterdam, Netherlands, 2011, July 3-7, Abst O19.06.
[40] MILLER V A, HIRSH V, CADRANEL J, et al. Subgroup analysis of LUX-Lung 1: a randomized phase Ⅲ trial of afatinib (BIBW 2992) + best supportive care (BSC) versus placebo + BSC in patients with NSCLC failing 1-2 lines of chemotherapy and erlotinib or gefitinib[J]. J Thorac Oncol, 2010, 5: 3.
[41] YANG C, SHIH J, SU W, et al. A phase II study of BIBW 2992 in patients with adenocarcinoma of the lung and activating EGFR mutations (LUX-Lung2) [J]. J Clin Oncol, 2010, 28: 7521.
[42] GONZALES A J, HOOK K E, ALTHAUS I W et al. Antitumor activity and pharmacokinetic properties of PF-00299804, a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor[J]. Mol Cancer Ther, 2008, 7: 1880-1889.
[43] SEQUIST L V, BESSE B, LYNCH T J, et al. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase Ⅱ trial in patients with advanced nonsmall-cell lung cancer [J]. J Clin Oncol, 2010, 28 (18): 3076-3083.
[44] MITRA A K, SAWADA K, TIWARI P, et al. Ligandindependent activation of c-Met by fibronectin and a(5)b(1)-integrin regulates ovarian cancer invasion and metastasis[J]. Oncogene 2011, 30(13): 1566-1576.
[45] VASHISHTHA P H, PATEL W, YU J G, et al. Safety data and patterns of progression in met diagnostic subgroups in OAM4558g; a phase Ⅱ trial evaluating MetMAb in combination with erlotinib in advanced NSCLC[J]. J Clin Oncol, 2011, 29 (Suppl 15): 7604.
[46] SCAGLIOTTI G V, NOVELLO S, SCHILLER J H, et al. Rationale and design of MARQUEE: a phase Ⅲ, randomized, double-blind study of tivantinib plus erlotinib versus placebo plus erlotinib in previously treated patients with locally advanced or metastatic, nonsquamous, non-small-cell lung cancer [J]. Clin Lung Cancer, 2012, 13(5): 391-395.
[47] HERBST R S, O'NEILL V J, FEHRENBACHER L, et al. Phase Ⅱ study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non-small cell lung cancer [J]. J Clin Oncol, 2007, 25: 4743-4750.
[48] REGALES L, GONG Y R, SHEN R, et al. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer[J]. J Clin Invest, 2009, 119: 3000-3010.
[49] JANGJIGIAN Y Y, GROEN H J, HORN L, et al. Activity and tolerability of afatinib (BIBW 2992) and cetuximab in NSCLC patients with acquired resistance to erlotinib or gefitinib [J]. J Clin Oncol, 2011, 29: 7525.
[50] MA C, WEI S, SONG Y. T790M and acquired resistance of EGFR TKI: a literature review of clinical reports[J]. J Thorac Dis, 2011,1(3): 10-18.
[51] WONG M K, LO A I, LAM B, et al. Erlotinib as salvage treatment after failure to first-line gefitinib in non-small cell lung cancer[J]. Cancer Chemother Pharmacol, 2010, 65: 1023-1028.
[52] ANNE P A, WANG F, SOCINSKI M A, et al. Randomized phase Ⅱ trial of erlotinib (E) alone or in combination with carboplatin/paclitaxel (CP) in never or light former smokers with advanced lung adenocarcinoma: CALGB 30406 [J]. J Clin Oncol, 2010, 28: 7503.
Mechanisms of resistance to EGFR TKIs and therapeutic perspectives in non-small cell lung cancer
WANG Shan-shan, CHANG Jian-hua (Department of Chemotherapy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China)
CHANG Jian-hua E-mail: changjianhua@163.com
Gefitinib and erlotinib, which are epidermal growth factor receptor (EGFR) specific tyrosine kinase inhibitors (TKIs), are widely used as molecularly targeted drugs for non-small-cell lung cancer (NSCLC). However, many patients ultimately develop resistance to these drugs. Mechanisms of acquired and primary resistance have been reported in the past few years, such as secondary mutation of the EGFR gene, amplification of the MET gene and mutations of the K-ras gene. Novel pharmaceutical agents are currently being developed to overcome resistance. This review focuses on these mechanisms of resistance to EGFR-TKIs and discusses how can be overcome.
Resistance; Mutation; Signaling pathway; Therapy
10.3969/j.issn.1007-3969.2013.04.012
R734.2
:A
:1007-3639(2013)04-0308-07
2012-09-02
2012-12-31)
常建华 E-mail:changjianhua@163.com