刘亚丽,徐英春
万古霉素是治疗甲氧西林耐药金葡菌(MRSA)感染的有效药物,也是治疗该菌感染的最后选择,目前该药已在临床上广泛使用。虽然万古霉素耐药金葡菌(VRSA)在全球的检出率很低,但万古霉素低水平耐药的金葡菌,包括异质性万古霉素中介金葡菌(hVISA)和万古霉素中介金葡菌(VISA)却在多个国家和地区广泛流行。以改良菌群谱型分析-曲线下面积法(PAP-AUC)作为检测hVISA的金标准,美国hVISA 的检出率为0.3%~15.0%[1-7],澳大利亚25.0%~37.6%[8-9],日本10.0%[10],中国9.5%~13.1%[11-12],加拿大5.3%[13],爱尔兰2.3%[14]等。目前研究表明,与万古霉素敏感金葡菌(VSSA)相比,hVISA导致万古霉素治疗失败的概率是前者的2.37倍(95%CI,1.53~3.67),且住院时间明显延长,住院费用增加[15]。现就hVISA的流行病学特点、检测方法、异质性耐药机制及其导致感染的治疗进行简要介绍,为临床医师及微生物工作者提供参考。
2004年,Howe等[16]对来自11个国家的101株hVISA/VISA的基因型进行分析,发现所有菌株均属于agrⅠ型或agrⅡ型,且以agrⅠ型为主(7/9 VISA,57/92 hVISA);同时,hVISA 在 CC5、CC8、CC22、CC30和CC45的5个克隆复合体中均有发现,而VISA仅存在于CC5和CC8 2个克隆复合体中。但近期美国的2项研究表明,hVISA/VISA主要存在于agrⅡ型中[17-18];来自澳大利亚的数据显示,46株 hVISA 均属于 ST239-MRSASCCmecⅢ克隆[19]。我国 Sun等[11]对26株 hVISA临床分离株的基因型分析发现,hVISA以agrⅠ-SCCmecⅢ-ST239型为主,其次是agrⅡ-SCCmecⅡ-ST5;陈宏斌等[12]分离的30株hVISA 中,agrⅡ-SCCmecⅡ最多,其次是agrⅠ-SCCmecⅢ。这些数据表明,并非所有的MRSA均可能发展成hVISA。hVISA的流行可能与其遗传背景以及不同地域的流行病学特点相关,如该地MRSA的分离率、耐药谱型、流行克隆株的基因型特点等。
此外,hVISA也可存在于甲氧西林敏感金葡菌(MSSA)中,法国(hVISA,7/2 300)[20]和美国(hVISA,3/121)[3]均有报道。这说明在常规检测中,不能仅依靠体外药敏和菌株特点,还要结合临床信息来判断,如患者是否存在严重基础疾病、入住ICU、万古霉素低剂量治疗、糖肽类治疗无效等情况,当上述情况存在时,即使体外药敏试验结果是敏感的,也应高度关注hVISA的存在。
由于hVISA体外药敏常显示敏感(MIC≤2 mg/L),仅在子代(10-5~10-6)中含有少量对万古霉素中介的 (MIC≥4 mg/L)的亚群,故给常规检测带来很大困难。研究表明,在万古霉素体外敏感的状态下,随着MIC值的增加,hVISA的检出率也逐渐上升,并在万古霉素 MIC值为2 mg/L时,hVISA 的分离率最高[1,19,21]。van Hal等[19]利用微量肉汤稀释法,对分离的46株hVISA的万古霉素MIC值分布进行分析,发现 MIC值≤0.5、1.0、1.5、2.0、4 mg/L时,上述hVISA 所占比率分别为2.2%、8.7%、6.5%、82.6%和0。这表明,对 MIC值处于敏感临界的菌株应给予高度关注,尤其是患者存在严重的基础疾病、入住ICU、MRSA定植或反复感染、万古霉素剂量偏低、糖肽类治疗无效,应高度怀疑存在hVISA。
目前,检测hVISA的方法有多种,PAP-AUC是检测hVISA的金标准,该方法以Mu3作为参考菌株,利用Graphpad Prism软件,绘制菌落数对数值对万古霉素浓度的曲线,计算曲线下面积(AUC),并将AUC待测菌株/Mu3介于0.9~1.3判定为hVISA。由于该方法费时费力、且需要特殊仪器螺旋涂布仪,故很难在常规实验室进行。宏量E试验(Macromethod E-test,MET)法,与标准 E 试验法不同的是,需配制2.0麦氏浊度单位的菌悬液,取200μL菌悬液均匀涂布于脑心浸液(BHI)琼脂平皿上,35℃孵育48 h后观察结果。如万古霉素和替考拉宁的 MIC均≥8 mg/L或替考拉宁 MIC≥12 mg/L则可判断为hVISA。国外数据显示,MET法的灵敏度和特异度分别为44.0%~98.5%和89%~98%[4,13,22];我国数据显示,MET 法的灵敏度和特异度分别为48.1%~70.4%和48%~85%,稍低于国外数据[11]。由于MET法操作简单,灵敏度和特异度相对较高,可用于常规疑似菌株的初筛,但因价格昂贵,不适合大规模筛查。E试验GRD(glycopeptide resistance detection)是一种新的hVISA检测方法。其与MET法的区别在于需要使用MHB配制0.5麦氏浊度的菌悬液,并将菌液均匀涂布于含5%羊血或马血的MHA平皿上,使用两端分别含有替考拉宁和万古霉素的特制E试验条,在24 h和48 h分别读取结果。判定标准为MIC替考拉宁≥8 mg/L或 MIC万古霉素≥8 mg/L,同时标准 E 试验 MIC万古霉素<4 mg/L 时,则判断为hVISA。研究数据显示,24 h读取结果的敏感度和特异度分别为43% ~77% 和 98% ~100%[4,22],48 h读取结果的敏感度和特异度分别为57%~100%和 36% ~96%[4,13,22]。琼脂稀释法是美国CDC与临床和实验室标准化协会推荐的筛选方法[23],配制0.5麦氏浊度的菌悬液,取10μL接种至含万古霉素6 mg/L的BHI琼脂(BHIA6V)上,35℃培养,24 h和48 h时各观察1次,如有≥2个菌落生长则判断为阳性;此外,也可采用含5 mg/L替考拉宁的BHI琼脂(BHIA5T)或 MHA(MHA5T)平皿进行筛选,该方法的敏感性较BHIA6V高,但特异性差,由于成本低、无需特殊仪器,故适合大规模初筛。Sun等[11]的研究结果显示,BHIA5T和BHIA6V的敏感度分别为88.9%和3.7%,特异度分别为17.3%和98.8%。
除上述方法外,采用含4 mg/L万古霉素且加入16 g/L酪蛋白的BHI琼脂进行hVISA的筛选,48 h后观察结果发现,该方法的灵敏度和特异度分别为91%和94%[4];此外,van Hal等[8]报道,利用微量肉汤稀释法测定体外万古霉素的MIC值,如将MIC≥2 mg/L作为判定折点筛选hVISA,其灵敏度、特异度、阳性预测值、阴性预测值、准确度分别为82%、97%、97%、80%和95%。这些数据说明,不同研究所得出的结果不同,由于方法不统一,很难进行比较和评价;但不同国家或地区以PAP-AUC作为金标准,可对不同方法的灵敏度、特异度、准确度、阳性预测值、阴性预测值进行分析比较,结合当地菌株的流行病学特点,选择适当的检测方法。
目前,hVISA的耐药机制仍不清楚。表型研究的结果提示,细胞壁增厚、肽聚糖交联减少、青霉素结合蛋白改变、自溶活性降低、细胞壁翻转率增加、毒力降低、生长率下降、革兰染色变浅、脲酶活性增强等可能与对万古霉素的敏感性下降有关[22]。利用基因组及转录组学方法,已发现了多个与糖肽类耐药相关的基因如pbpB、pbpD、ddh 、tcaA、msrA2、msrR、malR、lysC、graA、graB、graC、graD、graE、murZ、rsbU 等,这些基因表达的增高或降低,可直接或间接地影响对万古霉素的敏感度[24-25]。此外,在 VSSA发展成hVISA、VISA 的过程中,几个重要调控元件发生了点突变[vraS(I5 N )、graR (N197S)、rpoB (H481Y )、rpoB(A621E)]或缺失突变(walRK、clpP),并通过基因敲除和回补技术等证实了其在万古霉素耐药中发挥的重要作用[26-28];同时,其他一些重要的调控子,如Agr、SigB、SarA、Rot、MgrA等在金葡菌代谢、毒素分泌及万古霉素耐药中发挥重要的调控作用[3,29-31],它们可能形成复杂的调控网络,调控多种基因的表达。此外,利用蛋白质组学方法已发现多个蛋白质与万古霉素的异质性耐药紧密相关,如肽聚糖水解酶(LytM)、转糖基酶样蛋白(SceD)等,但具体机制仍需更深入研究。
虽然,常规体外药敏显示大部分hVISA对多种抗菌药物(包括万古霉素)敏感,但临床治疗结果并不乐观。多项研究已证实,糖肽类治疗常会失败,部分hVISA可对达托霉素的敏感性降低[32-33]。目前还没有研究证实,其他抗菌药物或替代方案的疗效优于万古霉素。故治疗的药物选择仍是困扰临床医生的难题。2011年1月美国感染病学会成人与儿童MRSA感染治疗指南[34]建议:对于万古霉素 MIC≥2 mg/L菌株引起的感染,应改用其他有效的药物,如达托霉素、利奈唑胺、奎奴普丁-达福普汀、甲氧苄啶-磺胺甲口恶唑以及特拉万星等。对于万古霉素治疗失败的持续性MRSA血流感染患者,应寻找并清除可能存在的其他感染灶,进行引流或清创;若达托霉素敏感,可给予大剂量达托霉素联合其他药物治疗;如菌株对万古霉素和达托霉素敏感性均降低,可选用奎奴普丁-达福普汀、甲氧苄啶-磺胺甲口恶唑、利奈唑胺或特拉万星进行治疗。
[1] Rybak MJ,Leonard SN,Rossi KL,et al.Characterization of vancomycin-heteroresistant Staphylococcus aureus from the metropolitan area of Detroit,Michigan,over a 22-year period(1986 to 2007)[J].J Clin Microbiol,2008,46(9):2950-2954.
[2] Sader HS,Jones RN,Rossi KL,et al.Occurrence of vancomycin-tolerant and heterogeneous vancomycin-intermediate strains(hVISA)among Staphylococcus aureus causing bloodstream infections in nine USA hospitals[J].J Antimicrob Chemother,2009,64(5):1024-1028.
[3] Harigaya Y,Ngo D,Lesse AJ,et al.Characterization of hete-rogeneous vancomycin-intermediate resistance,MIC and accessory gene regulator (agr)dysfunction among clinical bloodstream isolates of Staphyloccocus aureus[J].BMC Infect Dis,2011,11:287.
[4] Satola SW,Farley MM,Anderson KF,et al.Comparison of detection methods for heteroresistant vancomycin-intermediate Staphylococcus aureus,with the population analysis profile method as the reference method[J].J Clin Microbiol,2011,49(1):177-183.
[5] Richter SS,Satola SW,Crispell EK,et al.Detection of Staphylococcus aureus isolates with heterogeneous intermediate-level resistance to vancomycin in the United States[J].J Clin Microbiol,2011,49(12):4203-4207.
[6] Pitz AM,Yu F,Hermsen ED,et al.Vancomycin susceptibility trends and prevalence of heterogeneous vancomycin-intermediate Staphylococcus aureus in clinical methicillin-resistant S.aureus isolates[J].J Clin Microbiol,2011,49(1):269-274.
[7] Riederer K,Shemes S,Chase P,et al.Detection of intermediately vancomycin-susceptible and heterogeneous Staphylococcus aureus isolates:comparison of Etest and Agar screening methods[J].J Clin Microbiol,2011,49(6):2147-2150.
[8] van Hal SJ,Wehrhahn MC,Barbagiannakos T,et al.Performance of various testing methodologies for detection of heteroresistant vancomycin-intermediate Staphylococcus aureus in bloodstream isolates[J].J Clin Microbiol,2011,49(4):1489-1494.
[9] Horne KC,Howden BP,Grabsch EA,et al.Prospective comparison of the clinical impacts of heterogeneous vancomycin-intermediate methicillin-resistant Staphylococcus aureus(MRSA)and vancomycin-susceptible MRSA[J].Antimicrob Agents Chemother,2009,53(8):3447-3452.
[10] Neoh HM,Hori S,Komatsu M,et al.Impact of reduced vancomycin susceptibility on the therapeutic outcome of MRSA bloodstream infections[J].Ann Clin Microbiol Antimicrob,2007,6:13.
[11] Sun W,Chen H,Liu Y,et al.Prevalence and characterization of hete-rogeneous vancomycin-intermediate Staphylococcus aureus isolates from14 cities in China[J].Antimicrob A-gents Chemother,2009,53(9):3642-3649.
[12] 陈宏斌,王辉,孙闻嘉,等.2007年中国14个城市异质性万古霉素中介耐药的金黄色葡萄球菌分子特征[J].中华检验医学杂志,2009,32(11):1223-1227.
[13] Adam HJ,Louie L,Watt C,et al.Detection and characterization of heterogeneous vancomycin-intermediate Staphylococcus aureus isolates in Canada:results from the Canadian Nosocomial Infection Surveillance Program,1995-2006[J].Antimicrob Agents Chemother,2010,54(2):945-949.
[14] Fitzgibbon MM,Rossney AS,O′Connell B.Investigation of reduced susceptibility to glycopeptides among methicillin-resistant Staphylococcus aureus isolates from patients in Ireland and evaluation of agar screening methods for detection of heterogeneously glycopeptide-intermediate S.aureus[J].J Clin Microbiol,2007,45(10):3263-3269.
[15] van Hal SJ,Paterson DL.Systematic review and meta-analysis of the significance of heterogeneous vancomycin-intermediate Staphylococcus aureus isolates[J].Antimicrob Agents Chemother,2011,55(1):405-410.
[16] Howe RA,Monk A,Wootton M,et al.Vancomycin susceptibility within methicillin-resistant Staphylococcus aureus lineages[J].Emerg Infect Dis,2004,10(5):855-857.
[17] Sakoulas G,Eliopoulos GM,Moellering RC Jr,et al.Accessory gene regulator (agr)locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin[J].Antimicrob Agents Chemother,2002,46(5):1492-1502.
[18] Sakoulas G,Eliopoulos GM,Fowler VG Jr,et al.Reduced susceptibility of Staphylococcus aureus to vancomycin and platelet microbicidal protein correlates with defective autolysis and loss of accessory gene regulator(agr)function[J].Antimicrob Agents Chemother,2005,49(7):2687-2692.
[19] van Hal SJ,Jones M,Gosbell IB,et al.Vancomycin heteroresistance is associated with reduced mortality in ST239 methicillin-resistant Staphylococcus aureus blood stream infections[J].PLoS One,2011,6(6):e21217.
[20] Garnier F,Chainier D,Walsh T,et al.A1 year surveillance study of glycopeptide-intermediate Staphylococcus aureus strains in a French hospital[J].J Antimicrob Chemother,2006,57(1):146-149.
[21] Chen H,Liu Y,Sun W,et al.The incidence of heterogeneous vancomycin-intermediate Staphylococcus aureus correlated with increase of vancomycin MIC[J].Diagn Microbiol Infect Dis,2011,71(3):301-303.
[22] Howden BP,Davies JK,Johnson PD,et al.Reduced vancomycin susceptibility in Staphylococcus aureus,including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains:resistance mechanisms,laboratory detection,and clinical implications[J].Clin Microbiol Rev,2010,23(1):99-139.
[23] Clinical and Laboratory Standard Institute.Performance standards for antimicrobial susceptibility testing[S].22th informational supplement,2012.M100-S22.
[24] Cui L,Lian JQ,Neoh HM,et al.DNA microarray-based identification of genes associated with glycopeptide resistance in Staphylococcus aureus [J].Antimicrob Agents Chemother,2005,49(8):3404-3413.
[25] Maki H,McCallum N,Bischoff M,et al.tcaA inactivationincreases glycopeptide resistance in Staphylococcus aureus[J].Antimicrob Agents Chemother,2004,48(6):1953-1959.
[26] Shoji M,Cui L,Iizuka R,et al.walK and clpP mutations confer reduced vancomycin susceptibility in Staphylococcus aureus[J].Antimicrob Agents Chemother,2011,55(8):3870-3881.
[27] Cui L,Isii T,Fukuda M,et al.An RpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus[J].Antimicrob Agents Chemother,2010,54(12):5222-5233.
[28] Matsuo M,Hishinuma T,Katayama Y,et al.Mutation of RNA polymerase beta subunit (rpoB)promotes hVISA-to-VISA phenotypic conversion of strain Mu3[J].Antimicrob Agents Chemother,2011,55(9):4188-4195.
[29] Cafiso V,Bertuccio T,Spina D,et al.Modulating activity of vancomycin and daptomycin on the expression of autolysis cell-wall turnover and membrane charge genes in hVISA and VISA strains[J].PLoS One,2012,7(1):e29573.
[30] Moisan H,Brouillette E,Jacob CL,et al.Transcription of virulence factors in Staphylococcus aureus small-colony variants isolated from cystic fibrosis patients is influenced by SigB[J].J Bacteriol,2006,188(1):64-76.
[31] Oscarsson J,Tegmark-Wisell K,Arvidson S.Coordinated and differential control of aureolysin (aur)and serine protease(sspA)transcription in Staphylococcus aureus by sarA,rot and agr(RNAIII)[J].Int J Med Microbiol,2006,296(6):365-380.
[32] Fischer A,Yang SJ,Bayer AS,et al.Daptomycin resistance mechanisms in clinically derived Staphylococcus aureus strains assessed by a combined transcriptomics and proteomics approach[J].J Antimicrob Chemother,2011,66(8):1696-1711.
[33] van Hal SJ,Paterson DL,Gosbell IB.Emergence of daptomycin resistance following vancomycin-unresponsive Staphylococcus aureus bacteraemia in a daptomycin-naïve patient-a review of the literature[J].Eur J Clin Microbiol Infect Dis,2011,30(5):603-610.
[34] Pieper R,Gatlin-Bunai CL,Mongodin EF,et al.Comparative proteomic analysis of Staphylococcus aureus strains with differences in resistance to the cell wall-targeting antibiotic vancomycin[J].Proteomics,2006,6(15):4246-4258.