学生是学习的主体,是学习过程中的主动建构者。学生在数学学习中的发展是学习者的心智参与数学活动经历后的积淀,心智加工过程的本质是情感引领下展开思维的过程。在教学过程中,教师要充分发挥组织者、引导者与合作者的作用,把握教学重点,抓住问题本质,挖掘文本内涵,引领学生的思维向更深处漫溯。在课堂教学实践过程中,我尝试通过有效设问、追问、思辨、抽象来发展学生的数学思维,取得了一定的成效。
一、把握重点,精心设问,在富有挑战的问题中开启智慧
设问是教学过程中教师和学生之间常用的一种对话教学技能。教学效果的好坏取决于教师对数学教学的核心——数学问题的思考价值的把握程度。有效设问是一种艺术,一种技能。一个巧妙的设问,是一只点燃学生思维的火把,是一把开启学生智慧之门的钥匙。
在执教一年级《认识钟表》时,我充分利用学生已有的认知和生活经验,在学生认识7时、10时、4时、9时等整时的基础上,精心设计了一个问题:“观察这些钟面上的整时,有什么相同的地方?有什么不同的地方?”学生通过观察、比较和交流,发现分针指向12时,时针指向几,就是几时。我从本节课的教学目标和内容特点出发,抓住时机,精心设问,将学生已有但模糊、零散的认知和生活经验,拉近聚焦到找钟面上整时的共同点和不同点上来,抓住了本节课的教学重点,为学生的思维导航,拓展了学生的思维空间,学生围绕老师精心设计的问题展开了观察、分析、交流等数学活动,让学生在富有挑战的问题中开启智慧。
二、抓住本质,及时追问,引领学生的思维走向深入
追问是对事物的深度挖掘,是逼近事物本质的探究,是促进学生思考的催化剂。追问是教师对学生答问结果中表现出的一种有效处理方式,是对学生回答的进一步提高。法国教育家第斯多惠说过:“教学的艺术不在于传授本领,而在于激励、唤醒和鼓励。”教师深层次的追问,有利激发学生的内驱力,启迪学生的思维,引领学生去探索。
教学《体积与容积》时,我准备了一个土豆和一个胡萝卜,让学生比较谁占的空间大,有的学生认为土豆占的空间大,有的学生认为胡萝卜占的空间大,有的学生认为它们所占的空间差不多。在此基础上,我引导学生思考,怎样比较这两个物体所占空间的大小?经过独立思考和交流,学生想到了用实验的方法来比较,在两个相同的烧杯中倒入同样多的水,分别将土豆和胡萝卜完全浸没在水中,发现放入土豆的比放入胡萝卜的烧杯水面高,于是认为土豆占的空间大。实验结束后,我及时追问:“水面升高,水增多了吗?”“水没有增多,水面为什么会升高?”“为什么这两个烧杯的水面高度不一样?”通过对实验现象提出质疑并及时追问,让学生进一步感受物体都占有一定的空间,而且物体所占的空间是有大小的。正是抓住本质,在追问中引领学生透过实验现象进行深入比较和分析,从而有效突破了难点,加深了对数学知识的理解和建构,使学生思维的触角深入到问题的核心,引领学生的思维走向深入。
三、挖掘内涵,引发思辨,在更高的思维层次上展开对话
思辨有思和辨两个方面。何为思,就是想问题和看问题的思维方式和方法;所谓辨,就是辨别、辨认的过程和结果。先思而后辨,思中有辨,辨中有思,思和辨缺一不可。在教学过程中,要营造平等、民主的教学氛围,通过师生、生生思辨,充分挖掘学生的学习潜能,实现主体与主导的和谐统一。
教学《用分数表示可能性的大小》的巩固练习时,我出示了这样一道题:在袋子中放入红、黄、蓝、绿4个球,每次任意摸出两个球,摸到红球和黄球的可能性是几分之几?解答时,出现了两种不同的答案,一种由于受前面学习思维定势的影响,认为摸到红球和黄球的可能性是,另一种认为摸到红球和黄球的可能性是,课堂上出现了不同的观点。我及时抓住这有效的生成资源,让双方展开了“以理服人”的辩论。甲乙双方通过激烈的辩论对“每次任意摸一个球”和“每次任意摸两个球”这一规则有了深刻理解,发现每次摸一个球有4种可能,每次摸两个球有6种可能,精彩的辩论不仅让学生们达成了共识,还使他们对“用分数表示可能性的大小”有了更深刻的认识。正是对知识内涵的深度挖掘,引发思辨,在思辨中交流思想,撞击心灵,启迪智慧,让学生在更高层次上展开了一次意义深刻的对话。
四、归纳总结,分析抽象,超越具体经验的理性提升
抽象是从复杂的事物中抽取出一些事物的本质属性,而舍弃非本质属性的思维方法。数学知识是从实践中不断抽象出来的,数学中的概念、性质、法则、符号等都是抽象的结果。数学教学中,要充分利用学生的多种感官和已有经验,通过实物演示、动手操作及语言描述等形式,丰富学生的直接经验和感性认识。在此基础上,再通过分析、综合、比较、抽象、概括等思维活动,让感性认识上升为理性认识,使学生深刻地理解知识。
教学《找规律》时,通过创设情境,引出“两件上衣和3条裙子,选一件上衣和一条裙子搭配着穿,有多少种不同的穿法?”通过摆一摆、连一连等实践活动,引导学生从无序搭配走向有序搭配,不仅保证了搭配时既不重复又不遗漏,还使学生体验到“有序”的数学思想方法。在此基础上,让学生尝试用不同的方法来表示6种不同的搭配方法。在比较优化中,体会到用符号表示的方便与简洁。再通过变换上衣的件数和裙子的条数,早餐中饮品和点心的搭配问题,从家经过少年宫到学校的线路选择问题等,让学生借助已有的感性认识,在不断体验和反思中,引领学生进行归纳总结,逐步抽象出搭配规律。教学中选取了典型的学习材料,通过开展有效的数学活动,引领学生对问题进行抽象分析,归纳总结出搭配中的本质规律,从而实现超越具体经验的理性提升,把具体的数学问题上升到更一般的数学模型。
没有数学思维,就不是真正意义上的数学学习。学数学要学会数学思维,要通过数学学会思维。在课堂教学中,让我们开启教学智慧,在合乎情理、富有启迪的引领下,让学生的思维变得有序和高效,让学生的思维迸发出智慧的火