一款改进型AB类音频功率放大器的设计

2012-12-17 10:41薛超耀马任月
电子科技 2012年5期
关键词:功率管晶体管差分

韩 辉,薛超耀,马任月

(西安电子科技大学电路CAD研究所,陕西西安 710071)

随着经济发展与生活水平的提高,越来越多的便携电子设备出现。如MP3/MP4、手机、移动DVD、电子书等。大部分便携电子设备都有音频输出功能,因此需要使用一个音频功率放大器芯片。工程师在产品设计中,对音频功放的要求是:设计简单、芯片面积小、输出功率大、制造成本低。由于便携产品多是电池供电,因此还需要音频功放耗电少、效率高,以延长电池的使用寿命[1]。目前应用于便携设备中的音频功率放大器,主要分为AB类和D类两种,其主要区别是放大器分别工作在线性区和开关状态[2]。

AB类音频功率放大器工作在线性区,因其技术成熟、音频性能优异、应用简单、价格低等优势,一直在小功率音频放大器市场中占据主流[3]。AB类音频功放已被广泛应用于各种音频产品。考虑到AB类音频功放能够提供高品质的信号放大性能,因此适合耳机和一些小功率喇叭的应用。AB类音频功率放大器对输出运算放大器的主要技术指标包括:高开环增益、共模抑制比、电源抑制比、单位增益频率以及低功耗、失调电压等,而输出功率管的交越失真也是设计中需要避免的[4]。AB类输出运算放大器的主要特点是:晶体管的导通时间稍大于半周期,必须用两管推挽工作,以抑制偶次谐波,减小交越失真,效率较高,晶体管功耗较小等[5]。

设计了一种改进的AB类音频功率放大器,输入级采用电流抵消技术[6],提高了交流增益,中间级采用两个独立的运算放大器分别驱动两个功率管的栅极,避免了因为两个功率管之间的不匹配对输出级造成的影响,同时运用前级增益放大技术,提高了功率管的驱动能力,使输出具有大功率、高效率且节省芯片的面积。

1 放大器输入级的设计

音频功放输入级的主要目的是抑制共模信号,且其性能对集成运放的其他性能指标起决定性作用,是提高集成运放质量的关键。为达到上述目标,输入级常采用差分放大电路的形式。因为它的直流失调量小,线性也远比单管输入级好,共模信号的抑制能力强,具有很强的抗于扰能力,很小的温漂、级间容易直接耦合。如果采用普通的差分输入级作为功率放大器的输入级,则在保证稳定工作的前提下,放大器的交流增益比较低,差分电路形式主要有两种基本形式:长尾式和恒流源式。根据集成电路的工艺特点,集成电路中常用恒流源式差分电路作为输入级[7]。

为最大限度提高放大器的交流增益,设计了一种新型的差分运放输入级,采用电流抵消技术,提高了输入级增益。输入级的具体电路如图1所示

图1 差分运放的输入级

将M9和M10作为PMOS差分输入对,M7和M8为输入对提供固定的偏置电流,M11,M12与 M13,M14形成有源负载,提高了输出阻抗,有益于提高输入级的增益。电压Va,Vb由偏置电路提供。为进一步提高输入共模范围,该电路的主通路上的晶体管可以工作在亚阈值区域,即M9,M10工作在亚阈值区。首先分析电路的输入电压摆幅,适当设置M7,M8的偏置电压以提供足够的输入级偏置电流。PMOS差分对M9,M10工作在亚阈值区,根据亚阈值区的定义,输入差分管M9,M10的栅源电压

则该电路的最大输入共模电平为

工作在饱和区的运算放大电路的最大输入共模电平为

由式(1)~式(3)可以看出,工作在亚阈值区比工作在饱和区的运放输入共模范围大,这对于低电源电压运放有利。

为得到更大的增益,文中采用电流抵消技术。将两个MOS管M12,M13交叉耦合可得到一个两级的正反馈放大器,结果是差分电阻变为2/(gm14-gm13),图中M11,M12,M13,M14的尺寸均相等,跨导也相等。因此对于输入器件提供了准无穷大的电阻,获得更大的交流增益,为 AV=gm10/(gm14-gm13)。

采用PMOS管作为放大器的输入管是为了降低闪烁噪声,根据MOS管的特性,PMOS晶体管的闪烁噪声为NMOS晶体管的1/2~1/5。因此,在需要减小闪烁噪声的重要场合应该使用PMOS晶体管。

2 AB类输出级的设计

运放的输出级是音频功放芯片的核心部分,占绝大部分版图面积,其性能和集成度直接影响整个音频功放芯片的各性能参数及其面积大小。

传统反馈型AB类输出级电路需要两个工作点不同的同相输入信号,其复杂性导致其频率特性较差,带宽无法做到很高;如果输出晶体管进入深度截止,就会造成输出级的动态特性差,所以希望输出晶体管始终处于非截止工作区。

2.1 前馈无截止型AB类输出级

音频功放典型的输出级采用一种前馈无截止型AB 类结构[8-9],得到了一种结构简单,易于实现、性能稳定、电源利用率高、输出动态失真小、应用范围广的运算放大器。其电路原理图如图2所示。

图2 AB类前馈非截止型输出级电路原理图

图2所示的ClassAB输出级能够达到Rail-to-Rail的输出电压范围,并且相比于ClassA输出级能够获得较大的输出电流和较小的静态电流,因而具有近似于ClassB输出级的功效;而输出级栅上的电压VAB所产生的静态电流,使得输出晶体管在没有静态工作时仍然开启,从而消除了ClassB输出级的交越失真。对于ClassAB输出级的设计,通常要求输出灌电流Ipush和拉电流Ipull不受到电源电压和工艺波动的影响,同时要求输出级静态电流IQ较小且与电源电压和工艺波动无关。图2所示的 ClassAB输出级灌电流Ipush由M1~M4的栅源电压决定,拉电流Ipull由M5~M8的栅源电压决定,如式(4)~式(6)所示,假设晶体管工作在饱和区

对于M2~M8的栅极电压,有

假如 IB1=IB4,K5/K1=K6/K2=K7/K3=K8/K4,则将式(4)~式(7)带入到式(8)可以得到

静态工作时,ID8=ID4=IB2/2,如果 VGS7=VGS8,即

则VGS5=VGS6;此时输出级的静态电流IQ为

将式(10)和式(11)带入式(9)可以得到Ipush,Ipull与IQ的关系

由式(11)和式(12)可以看到,图 2所示的CLASSAB输出级灌电流Ipush和拉电流Ipull不会受到电源电压和工艺波动的影响;而静态电流IQ也可以精确控制,与电源电压和工艺波动无关。

在Rail-to-Rail输出级中,AB类传输函数可通过保持输出管栅极间电压恒定来实现。由于用AB类前馈式输出采用晶体管实现栅极间耦合,比采用电阻的AB类反馈式输出更节省电路面积,具有良好的高频特性,几乎不会增加输出级的功耗,同时降低了该栅极间电压对电源、工艺的敏感性,并且适用于低压运放,所以在设计中采用前馈式AB类控制。因为浮动电流源同AB类控制具有相同的结构,所以共源共栅电流镜对电源的依赖性补偿了AB类控制对电源的依赖性。这样,推挽输出管的静态电流对电源纹波不再敏感。

2.2 一种改进型AB类输出结构

针对输出级的设计,在AB类前馈非截止型输出级电路的基础上,提出了一种改进型AB类输出级的设计,采用准B类互补共源放大器控制全摆幅输出级,其工作原理如图3所示。

图3 改进型AB类输出级结构

由图3可知,音频输入信号经过输入级产生差分信号Iin+,Iin-,输出信号又分别进入下一级差分放大器A直接控制输出功率管的栅极电压,从而实现Railto-Rail AB 类输出。静态时,bIB1=IM4,aIB2=IM2,令a=K2/K1,b=K4/K3,当 IB1=IB2时可以得出输出级的静态电流Iout=aIB1=bIB2。当运放正常工作时,输出级电流为

其中,A为差分放大器A的增益,ΔI=Iin+-Iin-,该差分放大器的具体电路如图4所示。

图4 改进型AB类输出级原理电路图

在图4中,一组差分放大器由 M15,M16,M17,M18,M19,M20,M21,M22,M23,M24,M25组成,输出级为 Voutn,用来直接驱动PowerNMOS管的栅极。当差分输入端INP比INN电压低时,Voutn端电流会变大,而由于M16,M17为电流镜结构,所以多余的电流通过M18到地,而M18,M15又为电流镜结构,故 M18,M15漏电流基本相等,增加的电流通过M22镜像给M23,使运放的电流变大,实现正反馈。同样当INN端电压低于INP端电压时,流过M18的电流减小,从而减小运放所消耗的电流。M18的二极管连接可以确保Voutn端有一个最低电压,进而保证PowerNMOS管始终不会关断。

另一组差分放大器由 M26,M27,M28,M29,M30,M31,M32,M33,M34,M36,M37组成,输出级为 Voutp,用来直接驱动PowerPMOS管的栅极。具体电路实现方式与前一个运放相同,M28的二极管连接确保Voutp端有一个最高电压,从而使PowerPMOS管始终不会关断。

通过两个运放分别控制两个功率管,避免因PMOS管与NMOS管的不匹配而引起的误差,同时可以通过调节两个运放的增益进而控制两个功率管的栅压,使功率管在要求的功率指标内有最小的宽长比,进而节约芯片的面积。两个二极管连接的MOS管M18,M28分别保证两个功率管在任何状态下输出电流都不为零,改善了输出的失真特性。

3 整体电路实现

运算放大器的整体电路如图5所示。

图5 AB类整体结构的电路原理图

由图5可知,Ibias为电流源偏置,通过电流镜结构为整个运放提供恒定的电流,输入级采用电流抵消技术提高输入阻抗,输入信号由双端输入再由双端输出,提高了输入信号的增益的同时又分别作为下一级差分运放的输入,经过两级放大,从而提高了输入信号对功率管的驱动能力。两个差分运放的特殊结构又可以确保两个功率管在静态时工作在微导通状态,从而避免了CLASSB中由于功率管截止而导致的交越失真。为保证运放稳定工作,在电路第一级加入了密勒电阻电容网络,适当选取其取值,可以将运放的相位裕度补偿至60°以上,达到稳定性要求。由于运放工作于放大状态时输出管p管和n管之间的小信号电阻较小,输出管p管和n管没有必要做密勒补偿,而第一级放大器输出端在运放工作时输出电阻较大,所以要在该点做密勒补偿。

4 仿真结果与讨论

对该运放采用0.35μm CMOS数模混合工艺,用Cadence仿真工具进行仿真验证,仿真环境为:电源电压Vdd=5 V,Rload=32Ω,T=27℃,典型条件下,运算放大器的幅频,相频特性如图6所示,电路的直流开环增益为97.4 dB,相位裕度为84°,单位增益带宽为4.23 MHz。运放主要性能指标的仿真结果如表1所示。

图6 放大器幅频特性图

表1 运放主要性能指标仿真结果

由表1可知,该运放具有较好的频率特性,较高的电压增益,电源抑制比也较高,静态功耗小,适合于音频功率放大器的应用。且当输入信号为200 mV的正弦波,负载为32Ω时,该运放的THD为0.024%。

5 结束语

为适应低压低功耗设计的发展趋势,结合实际芯片设计,设计了一个低电源电压、低功耗的运算放大器。输入级采用电流抵消技术,在优化输入共模范围的同时提高了放大器增益;两个准B类互补共源放大器控制全摆幅输出级,具有电源电压低、高频特性好、不增加输出级功耗和不会降低运放的开环增益等优点,同时将控制电路与输入级放大电路相结合以减小噪声和失调,使电路更加紧凑、节省芯片面积、功耗也减少。仿真结果表明,该运放在推动32Ω负载时,输出功率95 mW,在20~20 kHz范围内的THD在0.1%内,PSRR可达到97 dB。具有较好的应用前景。

[1]薛智.便携电子设备中音频功放的发展[J].电子技术,2010,37(11):86 -87.

[2]LU Chihwen,HUANGYenchung.1.5 V Large - driving class- AB buffer amplifier with quiescent current control[J].E-lectronics Letters,2004(8):936 -943.

[3]王为之.低压工作的轨到轨输入/输出缓冲级放大器[J].中国集成电路,2008(10):14-19.

[4]WALTER A,GIANLUCA G,GAETANO P.Analysis and optimization ofa low-voltage class-ab output stage[J].IEEE Trance on Imformation,2002(1):321 -324.

[5]TORRALBAI A,CAWAJAL R G,RAMIREZ - ANGULO J,et al.Class AB output stages for low voltage CMOS opamps withaccurate quiescent current control by means of dynamicbiasing[C].Special Issue on ICECS,2001,36(1 - 2):69-77.

[5]WILLY M CSANSEN.Analog design essentials[M].北京:清华大学出版社,2008.

[6]程春来,柴常春,唐重林.一种低压低功耗CMOS折叠一共源共栅运算放大器的设计[J].现代电子技术,2007(9):40-44.

[7]DAI Guoding,HUANG Peng,YANG Ling,et al.A constant gm CMOS op-amp with rail-to-rail input/output stage[C].Washington,DC,USA:IEEE Computer Society,2009.

猜你喜欢
功率管晶体管差分
RLW-KdV方程的紧致有限差分格式
基于GaN HEMT的L波段600W内匹配功率管设计
基于GaN HEMT的S波段小型化内匹配功率管设计
2.6万亿个晶体管
数列与差分
功率晶体管击穿特性及测试分析
一种新型的耐高温碳化硅超结晶体管
基于差分隐私的大数据隐私保护
交流调速控制器MOSFET 功率管选型与发热分析
L波段大功率放大组件的设计