豆渣活性成分的提取、改性及应用研究进展

2012-09-15 04:25陶积德何玉凤杨彩霞王荣民毛崇武
天然产物研究与开发 2012年5期
关键词:豆渣异黄酮纤维素

陶积德,何玉凤,杨彩霞,王荣民,毛崇武

生态环境相关高分子材料教育部重点实验室,甘肃省高分子材料重点实验室,西北师范大学化学化工学院,兰州 730070

豆渣活性成分的提取、改性及应用研究进展

陶积德,何玉凤,杨彩霞,王荣民*,毛崇武

生态环境相关高分子材料教育部重点实验室,甘肃省高分子材料重点实验室,西北师范大学化学化工学院,兰州 730070

豆渣是以纤维等天然高分子为主的食品加工行业废弃物,是一种具有广阔应用前景和潜力的原材料。本文综述了豆渣的活性成分和药用价值与保健功能,以及豆渣中可溶性膳食纤维的结构、提取方法、改性及应用。豆渣作为可降解生物材料的研究与利用倍受关注,将为废弃天然高分子的再利用提供新途径。

豆渣;废弃天然高分子;膳食纤维;可降解生物材料

豆渣是豆制品生产过程中产生的不溶性残渣。我国大豆食品行业每年生产约2000万吨湿豆渣。在大部分地区豆渣仅作为饲料、肥料或作为废弃物处理,属于豆渣的初级利用,不仅经济效益低,也会造成环境污染。大豆豆渣是加工大豆制品的副产物,具有丰富的营养价值、独特的药用价值和保健功能。另外,豆皮中含有丰富的膳食纤维(dietary fiber,DF),约占豆皮干基的59.0%~62.8%,豆制品加工过程中的豆皮一般直接进入豆渣中,因此,豆渣中含有丰富的DF。豆渣中还含有大豆蛋白质、钙、磷、维生素等,具有很高的营养价值,开发和利用豆渣具有广阔的市场潜力,因此豆渣的回收利用受到广泛关注。本文即对豆渣的组成、活性成分的提取与改性及应用进行了综述。

1 豆渣的主要成分及豆渣的利用

豆渣的主要成分有纤维素、蛋白质、脂类、矿物质和维生素等,其中纤维素是很理想的DF。大豆豆渣中富含DF、果胶等物质。果胶可与胆酸结合并排出体外,消耗体内的胆固醇,从而降低血液总胆固醇的浓度,进而降低机体患心血管疾病的风险[1]。同时,DF还会影响可利用碳水化合物等成分在肠道内的消化吸收,使人不易产生饥饿感,因此对预防肥胖症有独特功效[2]。

豆渣蛋白中的氨基酸组成与大豆蛋白的氨基酸组成(如亮氨酸、苯丙氨酸、缬氨酸、苏氨酸、赖氨酸、异亮氨酸等)基本相当,含量大于36 mg/100 g。特别是豆渣蛋白中赖氨酸含量较高,因而可弥补谷类食品中赖氨酸的不足。大豆中所含有益健康的生物活性物质也存在于豆渣中:包括大豆异黄酮、大豆皂甙、大豆低聚糖、大豆膳食纤维、大豆磷脂等,这些物质具有抑制肿瘤、提高人体免疫力、增加胃肠功能、美容保健、抗衰老、缓解妇女更年期症状等功效。

豆渣DF还能与肠道中的K+、Na+进行交换,促使尿液和粪便中排出大量Na+、K+,从而降低血液中Na+与K+的比值,有助于降低血压[3]。此外,大豆豆渣中还含有大量钙质,每100 g风干样中含有约200 mg钙,很容易被人体吸收。因此,多吃豆渣,对减少骨质脆弱和动脉硬化有益。

以豆渣为原料,可制作多种食品。如将豆渣采用化学处理和膨化处理后制取豆渣粉,用豆渣粉可制作无糖豆渣饼干[4],不仅能提高纤维素和蛋白质的含量[5],还能改善口感。豆渣还可以制作具有口感良好的豆渣酥性饼干[6]、豆渣分离蛋白、豆渣发酵碳酸饮料、人造肉等。以豆渣、芹菜浆为主要原料[7],也制作口味较佳的豆渣蔬菜片。豆渣还可以制作豆渣纤维面,豆渣方便面[8],豆渣挂面等。Chan[9]等在碱性条件下提取了豆渣蛋白,通过酸修饰改善了豆渣的溶解性及功能,拓宽了豆渣蛋白在食品中的应用。豆渣中的水溶性大豆多糖还具有稳定泡沫、防止蛋白质沉淀、优良乳化、保水、保油的性能[10,11],是一种优良的食品添加剂。高金燕[12]等利用豆渣制得了食品添加剂。此外,以豆渣为原料,还可以制作豆渣食用纸[13]。Nakornpanom[14]等研究了豆渣在胃蛋白酶和胰蛋白酶的消化过程中,对蛋白质的消化以及对油类释放的重要性。

2 豆渣活性成分的提取及功能

豆渣中含有的小分子活性成分有大豆异黄酮、大豆多酚等,高分子活性成分有多糖(如DF)、多肽等。从豆渣中提取大豆异黄酮有酸解法[15]、沉淀法[16]、超声波法[17]、微波法[18]和有机溶剂萃取法[19]等。刘建平[20]等采用超声波和有机溶剂萃取提取了豆渣中的大豆异黄酮,提取率可达8.82 mg/ g。何恩铭[21]等提取的大豆异黄酮,提取量为8.95 mg/10 g。李光[22]等用超声波提取了大豆异黄酮,浸提率达1.2%。谢婧[23]发现以毛霉发酵法对豆渣发酵后可使异黄酮含量增加。Quitain[24]等发现应用超临界二氧化碳技术可恢复豆渣中的油组分(包括抗氧化剂大豆多酚和大豆异黄酮)。

大豆异黄酮是含二羟基或三羟基的黄酮类化合物,具有抗氧化[25],耐热、耐光性好,在酸性介质中稳定等特点,可替代化学合成抗氧化剂,从而应用于大多数食品中。大豆异黄酮还可缓解妇女更年期综合症,小剂量使用可有效防治卵巢切除大鼠的骨量丢失[26]。大豆异黄酮还有防癌[27-30]、降低胆固醇[31]、防止动脉粥样硬化[32,33]、预防骨质疏松等功效[34-36]。Chiou[37]等从豆渣中提取了一种新的贝塔苷酶,此酶对苷基葡萄糖大豆异黄酮有专属性作用,而对大豆异黄酮共轭的丙二酰基糖苷键没有作用。

3 豆渣膳食纤维的提取与应用

豆渣中富含的DF是不能被人体消化的碳水化合物,可分为水溶性纤维素(SDF)和水不溶性纤维素(IDF)。SDF中含有果胶和树胶等;IDF中含有纤维素、木质素和一些半纤维等。DF的营养功能及其研究开发是目前研究的热点。

3.1 豆渣膳食纤维的组成

每100 g干豆渣中约含36 g DF。豆渣DF的主要成分是大豆水溶性多糖(SSPS)。SSPS具有与胶质类似的结构[38],主要由三部分组成:聚半乳糖醛酸(RG)长链和聚半乳糖醛酸(GN)组成的主链、同型半乳聚糖短链和同型阿拉伯聚糖侧链、连接糖蛋白的木聚糖半乳糖醛酸(图1)。其中糖侧链通过聚鼠李糖半乳糖醛酸结合,比聚半乳糖醛酸主链骨干更长[39]。糖蛋白与木聚糖半乳糖醛酸的还原末端共价相连,主要由脯氨酸(Pro)、天冬氨酸(Asp)和谷氨酸(Glu)组成,分子量约为50000[40]。组成大豆DF的半纤维素主要有阿拉伯木聚糖、木糖葡聚糖、半乳糖甘露聚糖和β(l-3,1-4)-葡聚糖四种。通过测定豆渣及其细胞壁的红外光谱[41],发现其存在较多的酯键和糖键。

3.2 豆渣膳食纤维的提取与应用

豆渣膳食纤维的提取方法主要有:物理法(挤压法)、化学法(包括直接水提法和酸碱法)[42]、生物法(酶法)及综合法。

挤压工艺可大幅提高豆渣中SDF的含量[43],同时挤压豆渣可保持原豆渣的持水力,其膨胀力和DF的粘度也有所提高,因而DF的生理功能也得到了改善。并且挤压对豆渣纤维的结晶没有明显的破坏。有研究表明通过热压处理后的含水豆渣样品在30℃和60℃再用高液体静压处理,SDF的含量可提高8倍多[44]。娄海伟[45]等用挤压豆渣为原料制备的SDF产率达到34%。

化学法是利用化学试剂提取DF的方法。其中,水浸提法中影响提取率的因素有温度、时间、pH值、加水量等,如:在100℃自然pH下提取10 min,SDF产率可达11%[46]。若利用150℃亚临界水,SDF的得率可达22%[47]。以豆渣为原料,可提取以DF为主的水溶性多糖[48]。酸法水解豆渣时,90℃水解5 h,豆渣的水解率可达58%[49]。酸法和碱法结合提取豆渣中的DF[50]时,用pH=3的酸液提取1.5 h后,用pH=11的碱液提取2 h,纤维素含量可达72%。再经6%盐酸水解,92℃下浸泡25 min的微晶化处理,纤维素含量可达91%,且理化性质有较大改善。陈霞[51]等以新鲜豆渣为原料,通过碱-酶法提取的豆渣DF产率为85%,产品纤维素含量为80%。

图1 豆渣水溶性膳食纤维的结构Fig.1 The structure of soybean dregs soluble fiber

以酶法为代表的生物法提取豆渣DF受到关注。复合纤维素酶水解豆渣提取SDF时,SDF的产率可达39%[52]。部分酶对豆渣纤维有降解作用,如粗壮脉纹孢菌所产生的纤维素酶是一组复合酶系[53],经纤维素酶系的作用,IDF分子变小,且产生大量小分子物质,导致膳食纤维含量降低,同时水溶性固形物含量增加[54]。薛振环[55]等发现粗壮脉纹孢菌对豆渣中水不溶性非纤维素多糖的降解能力最强,其含量由原来的37.14%降为0.58%,纤维素、水溶性非消化性多糖,含量分别由原来的12.87%、0.26%降为7.73%、0.18%,而该菌对木质素基本不降解。

孙雁霞[56]等用酸解、碱解和酶解3种方法对DF进行了改性研究,发现通过酸、碱处理后可不同程度地提高SDF的得率,但处理后的纤维颜色变深、持水力和膨胀力有所下降,而酶法得到的纤维品质较好。朱会霞[57]等采用碱法脱腥、蛋白酶水解去除残留蛋白,与原料豆渣相比,其DF的持水性提高了87%,溶胀性提高了94%。此外,酶法与机械法结合也可提高SDF的含量[58]。

SDF在结肠中几乎被彻底水解,产生的短链酸要比IDF多。因此,在降低血液胆固醇含量及对有害物质的清除上都比IDF效果好,用途也比IDF广泛。采用羧甲基化可提高豆渣纤维降血糖的作用。生物法也可以改善豆渣纤维的性质,Zhu[59]等应用枯草杆菌发酵豆渣提高了其抗氧化活性和缩氨酸的水平。

通过酶法、微生物发酵法、超高压均质处理及多技术联用等方法都可提高豆渣DF的活性[60]与可溶性。酶法则是因为酶可分解IDF中的纤维素成分,生成小分子量的单糖或寡糖,从而增加SDF的产率。微生物发酵主要是经较长时间的发酵处理将不断产生含大量有机酸的代谢产物,造成DF在较长时间处于酸性条件,使纤维素的糖苷键断裂,产生新的还原末端,使DF的大分子聚合度下降,部分转化成非消化可溶性多糖。大豆DF具有明显的生理和医疗功效,大量摄入DF含量高的食品可降低发病率[61]。DF还能调节血压[62]、降低血浆和肝脏中的油脂和胆固醇[63],增加组织对胰岛素的敏感性[64]。现已发现结肠癌与DF的摄入量不足有关[65]。DF中起重要生理功能的是SDF和半纤维素[66]。SDF在许多方面具有比IDF更强的生理功能,如持水率高,防便秘等。DF比重小,体积大,缚水后体积更大,对肠道产生容积作用,不会产生饥饿感[67],对肥胖症的预防有较好的作用。

4 可溶性大豆蛋白的提取

肽可以通过与RAS和KKS系统中的ACE结合,减少血管紧张素II的生成,避免具有舒缓血管作用的缓激肽失活,从而达到降低血压的目的[68]。肽在促进免疫细胞增生,抗肿瘤,抗氧化,增强机体免疫力等方面也有一定的功效。任海伟[69]等采用蛋白酶水解豆渣制备了可溶性蛋白肽,结果表明:豆渣在120℃,pH=9.0条件下预处理15 min后,采用碱性蛋白酶在pH=9.0,55℃作用4 h,再用木瓜蛋白酶在pH=7.0下作用4 h,可溶性蛋白肽提取率可达到63%。

5 豆渣改性及应用

豆渣中富含的DF除被提取利用外,为了提高豆渣的附加值,还可对豆渣进行改性后再利用。

5.1 合成热固性酚醛树脂

利用豆渣苯酚液化物与甲醛进行树脂化反应可制取酚醛树脂,此树脂可用于胶合板的压制,制得胶合板标准的热固性酚醛树脂[70]。张天昊[71]等以大豆豆渣为原料,研究了其树脂化和豆渣液化物树脂胶。结果表明:液化产物的残渣率为2.7%,液化效率可达到97.3%。以价格低廉的豆渣代替苯酚制备豆渣液化物树脂模压材料比酚醛树脂模压材料具有更好的生物降解性能。Yang[72]等分别用1%的硫酸和1%的氢氧化钠溶液水解豆渣,用苯酚-间二苯酚-甲醛(PRF)为交联剂,用粘合树脂粘合到豆渣组成的高密度纤维板上制得了抗张强度及甲醛释放量均符合标准的纤维地板。

5.2 制备新型生物吸附剂

大豆DF由于自身的结构特点,可与阳离子进行可逆交换,食用DF可降低重金属离子对人体的毒性。有研究表明,未经预处理的豆渣原料对Cd2+和Zn2+具有吸附能力[73],Cd2+和Zn2+的最大吸附量分别为19.6 mg/g和11.1 mg/g。如采用瞬时高压作用[74],对重金属离子的吸附量可增加30% ~33%。在120°C下,豆渣经柠檬酸改性[75],可对Cu2+的吸附能力从0.4 mmol/g提高到2.4 mmol/g。另有研究表明[76],经柠檬酸改性的豆渣对Cu2+的吸附量为18.0 mg/g。

5.3 其他应用

Mateos-Aparicio[77]等分离了豆渣,豌豆和蚕豆的细胞壁多糖,制得了三种富含果胶的提取物,两种含有果胶和半纤维素的复合物和富含纤维素的残渣。通过对豆渣的膨胀力和持水力研究表明,其具有潜在的织物添加剂作用。Ahn等[78]利用豆渣还制得了一种木材防腐剂。

6 结语

豆渣作为大豆制品生产中的副产物,长期以来仅作为饲料或肥料使用,附加值低,造成主产品成本高,经济效益低,一直困扰着加工行业的发展。近年来,人们从营养学的角度对其有了新的认识。DF是豆渣的主要成分,用豆渣生产DF是大豆综合利用的一条新途径。另外,将豆渣改性后将拓宽其应用领域,将为废弃天然高分子的再利用提供一种新途径。

1 Aleixandre A,Miguel M.Dietary fiber in the prevention and treatment of metabolic syndrome:a review.Crit Rev Food Sci Nutr,2008,48:905-912.

2 Peters U,et al.Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme.Lancet,2003,361:1491-1495.

3 Zhang LF(张丽芳),Zhang AZ(张爱珍).Progress in study of dietary fiber.Chin General Pract(中国全科医学),2007,10:1825-1827.

4 Xiao SX(肖少香),Sheng CM(盛灿梅).Preparation of bean dregs biscuit without sugar.Food Mach(食品与机械),2004,20(4):43-45.

5 Zhao GL(赵功玲),et al.Cake with soybean residue powder and millet powder.Food Sci Technol(食品科技),2004,(12):28-30.

6 Wu JF(吴金凤),et al.Study on the crisp bean dregs biscuit.Sichuan Food Ferment(四川食品与发酵),2006,42 (6):32-35.

7 Wang YP(王越鹏),Wang JM(汪建明).Research and development of bean dregs crisp with vegetable.Guangzhou Food Sci Technol(广州食品工业科技),2003,19(4):64-66.

8 Yao XL(姚小玲),Sun WJ(宋卫江).Study on the manufacturing technique of convenient noodle from soybean dregs fiber.Food Res Dev(食品研究与开发),2006,27:140-142.

9 Chan WM,Ma CY.Acid modification of proteins from soymilk residue(okara).Food Res Inter,1999,32:119-127.

10 Schneeman BO.Dietary fiber and gastrointestinal function.Nutr Res,1998,18:625-632.

11 Furuta H,et al.Extraction of water-soluble soybean polysaccharide under acidic conditions.Biosci Biotechnol Biochem,1998,62,2300-2305.

12 Gao JY(高金燕),Chen HB(陈红兵).Making food additives from soybean residue.Food Sci Technol(食品科技),2002,(12):65-66.

13 Zhang H(张恒),et al.Preparation and quality analysis of edible paper of bean dregs.Food Sci(食品科学),2008,29: 201-204.

14 Nakornpanom NN,et al.Effect of soy residue(okara)on in vitro protein digestibility and oil release in high-calorie emulsion stabilized by heated mixed proteins.Food Res Inter,2010,43:26-32.

15 Wang HB(汪海波),et al.Study on the processing of extracting soy isoflavone aglycone by acid hydrolysis.Food Sci(食品科学),2003,24:98-101.

16 Xu FP(许芙萍).Study on affect factors for purification of soy isoflavone by depositing.Chin Food Ind(中国食品工业),2008,21(8):48-50.

17 Pan LM(潘廖明),et al.Extraction of soybean isoflavone assisted by ultrasonic wave.China Oils Fats(中国油脂),2003,28(11):85-87.

18 Qian LL(钱丽丽),et al.Extraction of soybean isoflavones by microwave pretreatment.Modern Food Sci Technol(现代食品科技),2007,23:38-39.

19 Gao JY(高金燕),Xu JL(徐江林).The prime research on extraction of soybean isoflavones from soybean residues.China Food Addit(中国食品添加剂),2003,3(5):16-18.

20 Liu JP(刘建平),et al.Study on the ultrasonic extraction technology of isoflavone from soybean residues.J Anhui Agric Univ(安徽农业科学),2010,38:2042-2043.

21 He EM(何恩铭),et al.Research on extraction of soybean isoflavones from soybean residue.Acta Agric Boreali-occid Sin(西北农业学报),2006,15:160-162.

22 Li G(李光),et al.Optimization of isoflavones extraction assisted by ultrasound from soybean dregs using response surface methodology.Food Technol(食品科技),2008,(2): 144-148.

23 Xie J(谢婧).Change of content and configuration of isoflavones in process of soybean residue fermentation with mucor.China Brewingy(中国酿造),2009,(5):77-83.

24 Quitain AT.et al,Recovery of oil components of okara by ethanol-modified supercritical carbon dioxide extraction.Bioresour Technol,2006,97:1509-1514.

25 Huang XD(黄晓东),et al.Study on the antioxidative stability of soybean residue extract.China Brewingy(中国酿造),2006,(4):42-43.

26 Wang JH(王建华),et al.Effects of isoflavones on bone mineral density and bone metabolism in ovariectomized rats.Nat Prod Res Dev(天然产物研究与开发),2003,15:43-45,54.

27 Yamamoto S,et al.Soy isoflavones and breast cancer risk in Japan.J Natl Cancer Inst,2003,95:906-913.

28 Wu AH,et al.Plasma isoflavone levels versus selfreported soy isoflavone levels in Asian-American women in Los Angeles County.Carcinogenesis,2004,25:77-81.

29 Takimoto CH,et al.Phase I pharmacokinetic and pharmacodynamic analysis of unconjugated soy isoflavones administered to individuals with cancer.Cancer Epidemiol Biomar Prev,2003,12:1213-1221.

30 Cha LY(查龙应),et al.Advances on anticancer bioactivities of soyasaponins.Nat Prod Res Dev(天然产物研究与开发),2009,21:1076-1079.

31 Liao WP(廖苇萍),Shi YG(石元刚).Effect of astragalus polysaccharides and soy isoflavones on glucose metabolism in diabetic rats.Acta Acad Med Mil Tert(第三军医大学学报),2007,29:416-418.

32 Nagarajan S,et al.Soy isoflavones attenuate human monocyte adhesion to endothelial cell-specific CD54 by inhibiting monocyte CD11a.J Nutr,2006,136:2384-2390.

33 Ji LL(季莉莉),et al.Effect of Soy isoflavones(SI)on antioxidative enzyme and lipid peroxide in rat.Chin Prev Med(中国预防医学杂志),2006,7:1-4.

34 Chen YM,et al.Beneficial effect of soy isoflavones on bone mineral content was modified by years sincemenopause,body weight,and calcium intake:a double-blind,randomized,controlled trial.Menopause,2004,11:246-254.

35 Ikeda Y,et al.Intake of fermented soybeans,natto,is associated with reduced bone loss in postmenopausal women:Japanese population-based osteoporosis(JPOS)study.J Nutr,2006,136:1323-1328.

36 Wang JH(王建华),et al.Effects of daidzein on prolifereaction and differentiation of cultured osteoblasts in vitro.Nat Prod Res Dev(天然产物研究与开发),2003,15:152-154.

37 Chiou TY,et al.Beta-glucosidase isolated from soybean okara shows specificity toward glucosyl isoflavones.J Agric Food Chem,2010,58:8872-8878.

38 Nakamura A,et al.Emulsifying properties of enzyme-digested soybean soluble polysaccharide.Food Hydro,2006,20:1029-1038.

39 Nakamura A,et al.Structural studies by stepwise enzymatic degradation of the main backbone of soybean soluble polysaccharides consisting of galcaturonan and rhamnogalacturonan.Biosci Biotechnol Biochem,2002,66:1301-1313.

40 Nakamura A,et al.Soy soluble polysaccharides stabilization at oil-water interfaces.Food Hydro,2006,20:277-283.

41 Mateos-Aparicio I,et al.Multifunctional antioxidant activity of polysaccharide fractions from the soybean byproduct okara.Carbohydr Polym,2010,82:245-250.

42 Zhang SX(张世仙),et al.Advance in extraction method and function of dietary fiber from soybean dregs.J Southwest China Normal Univ(西南师范大学学报),2009,34(4):93-97.

43 Jin MG(金茂国),Sun W(孙伟).A Study on the use of extrusion for raising the SDF content in soybean dregs.Food Feed Ind(食品与饲料工业),1996,8:35-38.

44 Mateos-Aparicio I,et al.High hydrostatic pressure improves the functionality of dietary fibre in okara,by-product from soybean.Innov Food Sci Emerg Technol,2010,11:445-450.

45 Lou HW(娄海伟),Chi YJ(迟玉杰).Optimization of technology for preparing soluble dietary fiber from extruded soybean residue.Trans Chin Soc Agric Eng(农业工程学报),2009,25:285-289.

46 Jiang ZM(姜竹茂),et al.Producing soluble dietary fibre from bean dregs.J Chin Cereals Oils Assoc(中国粮油学报),2001,16(3):52-55.

47 Lou GQ(娄冠群),et al.Sub-critical water extraction of soluble soybean polysaccharide from soybean dregs.China Oils Fats(中国油脂),2010,35(5):61-63.

48 Li Z(李庄).Extraction of water-soluble soybean polysaccharides and its applications.East China Normal Univ(华东师范大学),2005:1-15.

49 Jiang L(姜录),Hu F(胡飞).The research of conditions for acid hydrolyzation of soybean dregs.Food Res Dev(食品研究与开发),2008,29:97-100.

50 Li WJ(李文佳),et al.Study on preparation of soybean dietary fiber from bean dregs.Acad Period Farm Prod Proc(农产品加工·学刊),2010,(6):51-53.

51 Chen X(陈霞),et al.The research of conditions for extraction of soybean dregs natural cellulose.Soybean Sci(大豆科学),2001,20:128-132.

52 Zhou DH(周德红),et al.Preparation of soluble dietary fiber from soybean residue and its uses as microencapsulating wall material.Food Ferment Ind(食品与发酵工业),2005,31 (5):55-58.

53 Yu E(余玮),et al.Study on the properties of cellulase in neurospora crassa.Food Sci(食品科学),2006,27(12):50-53.

54 Romero MD,et al.Cellulose production by neurospora crassa on wheat straw.Enzyme Microb Technol,1999,25:244-250.

55 Xue ZH(薛振环),et al.Effect on the dietary fiber in soybean residue fermented by neurospora crassa.Sci Technol Food Ind(食品工业科技),2009,30:156-158.

56 Sun YX(孙雁霞),et al.Study on preparing water-soluble dietary fiber from soybean residue.Food Ferment Ind(食品与发酵工业),2009,35:92-95.

57 Zhu HX(朱会霞),Sun JX(孙金旭).The study of preparation conditions for dietary fiber of soy bean dregs.China Brewing(中国酿造),2008,(24):78-80.

58 Xu GC(徐广超),Yao HY(姚惠源).The research of conditions for extraction of soybean soluble dietary fiber.J Henan Univ Technol(河南工业大学学报),2006,26:54-57.

59 Zhu YP,et al.Improvement of the antioxidant activity of chinese traditional fermented okara(Meitauza)using Bacillus subtilis B2.Food Contr,2008,19:654-661.

60 Han DP(韩东平),et al.Research progress on improving activity of dietary fiber from soybean dregs.Food Sci(食品科学),2008,29:670-672.

61 Mark LD.Dietary fiber overview in:dietary fiber in health and disease,handbook of dietary fiber.New York:Marcel Dekker Inc,2001.

62 Burke V,et al.Dietary protein and soluble fiber reduce ambulatory blood pressure in treated hypertensive.Hypertension,2001,38:821-826.

63 Villanueva MJ,et al.Effect of high-fat diets supplemented with okara soybean by-product on lipid profiles of plasma,liver and faeces in Syrian hamsters.Food Chem,2011,124: 72-79.

64 Bessesen DH.The role of carbohydrates in insulin resistance.J Nutr,2001,131:2782-2786.

65 Marlett JA,et al.Position of the american dietetic association:health implications of dietary fiber.J Am Diet Assoc,2002,102:993-1000.

66 Wang S(王遂),Liu F(刘芳).Studies on the preparation,property and application of highly active dietary fibre from corn bran(HAFC).Food Sci(食品科学),2000,21(7):22-24.

67 James P.In Dietary Fiber.Fiber-depleted foods and disease.london:Academic Press,1985.

68 Li GH,et al.Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects.Nutr Res,2004,24:469-486.

69 Ren HW(任海伟),et al.Research on extraction and structure characterization of soluble protein peptides from soybean dregs by enzyme hydrolysis,Food Ind Sci Technol(食品工业科技),2009,30:275-277.

70 Zhang TH(张天昊),Zhang QH(张求慧).Study on synthesis of thermosetting PF resin with liquefied soybean dregs in phenol.China Adhesives(中国胶粘剂),2009,18:30-34.

71 Zhang TH(张天昊).Liquefaction of soybean dregs in phenol and the resinification of the reactant.Beijing porestry university,2009.

72 Yang I,et al.Adhesives formulated with chemically modified okara and phenol-resorcinol-formaldehyde for bonding fancy veneer onto high-density fiberboard,J Ind Eng Chem,2009,15:398-402.

73 Li L(李莲),et al.Adsorption of Cd2+and Zn2+in water by bean dregs.Environ Prot Chem Ind(化工环保),2008,28: 296-299.

74 Liu CM(刘成梅),et al.Instantaneous high pressure impact on adsorption of SDF for Cu2+,Ca2+,Mg2+,Pb2+under physiological condition.Food Sci(食品科学),2006,27: 170-173.

75 Marshall WE,et al.Enhanced metal adsorption by soybean hulls modified with citric acid.Biores Technol,1999,69:263-268.

76 Xiang GQ,et al.Determination of trace copper in food samples by flame atomic absorption spectrometry after solid phase extraction on modified soybean hull.J Hazard Mater,2010,179:521-525.

77 Mateos-Aparicio I,et al.Isolation and characterisation of cell wall polysaccharides from legume by-products:okara (soymilk residue),pea pod and broad bean pod.Food Chem,2010,112:339-345.

78 Ahn SH,et al.Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara,copper and/or boron salts.J Hazard Mater,2010,178:604-611.

Advanced in Extraction,Modification,and Utilization of the Active Constituents from Beandregs

TAO Ji-de,HE Yu-feng,YANG Cai-xia,WANG Rong-min*,MAO Chong-wu
Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education,Key Laboratory of Polymer Materials of Gansu Province,College of Chemistry and Chemical Engineering,Northwest Normal University,Lanzhou 730070,China

Beandregs is a kind of natural polymer-based fibers such as food processing industry waste.It has broad application prospects and potential of the raw materials.In this paper,the active constituents,medicinal value and healthy functions of beandregs were introduced,and the structures,extraction methods,modification and application of soluble dietary fiber from beandregs were reviewed.In short,beandregs was worth paying more attention in research and utilization as a degradable biomaterial,and it could provide a new way for the reuse of abandoned natural polymer.

beandregs;abandoned natural polymer;dietary fiber;degradable biomaterials

R284.2

A

1001-6880(2012)05-0702-07

2010-11-25 接受日期:2011-03-22

国家自然科学基金项目(20964002);甘肃省属高校基本科研业务费专项资金项目(2010-176);甘肃省科技支撑计划项目(1011GKCA017)

*通讯作者 Tel:86-931-7970358;E-mail:wangrm@nwnu.edu.cn

猜你喜欢
豆渣异黄酮纤维素
纳米纤维素自愈合材料的研制
纤维素基多孔相变复合材料研究
纤维素气凝胶的制备与应用研究进展
豆渣忆往
豆渣变废为宝
基于近红外技术的苎麻叶半纤维素、纤维素、木质素及Cd含量快速测定
LC-MS测定黑豆中异黄酮和花色苷的含量
HPLC法同时测定天山岩黄芪中4 种异黄酮
豆渣做出肉的味道
HPLC测定芪卫颗粒中毛蕊异黄酮葡萄糖苷的含量