陈莉敏
常型Sturm-Liouville算子特征值的渐近式和迹公式
陈莉敏
(常州工程职业技术学院 基础部,江苏 常州 213164)
应用迭代法计算了自伴型Sturm-Liouville微分算子特征值的渐近式,据此给出了算子的一类迹公式,并计算出其正则项和迹量.
Sturm-Liouville算子;特征值;迹公式
定理1[3]55自伴边条件下的特征值都是实的.
[1] ATKNSON F V. Discrete and continuous boundary problems[M]. New York: Academic Press, 1964.
[2]EATHEMATICA S P. On the location of spectral concentration for Sturm-Liouville problems with rapidly decaying potential[J]. Mathematica, 1998, 45: 23-36.
[3]刘景麟. 常微分算子谱论[M]. 北京:科学出版社,2009.
[4]LEVITAN B M, SARGSJAN I S. Sturm-Liouville and Dirac operators[M]. Dordrecht: Kluwer Academic Publishers, 1991.
An Asymptotic Expression and Trace Formula of Eigenvalues for Sturm-Liouville Operators
CHENLi-min
(Department of Basic Courses, Changzhou Institute of Engineering Technology, Changzhou 213164, China)
The coefficients in asymptotic formulae of eigenvalue for Sturm-Liouville operators with self-adjoined boundary condition are calculated, and on the basis of this, a new trace concept and its expressions are introduced.
Sturm-Liouville operators; eigenvalues; trace formulae
1006-7302(2012)02-0025-04
O175
A
2011-11-08
陈莉敏(1977—),女,江苏扬州人,讲师,硕士,研究方向为微分方程.