郑瑶辰 陈建桥 魏俊红 郭细伟
(华中科技大学力学系 武汉 430074) (工程结构分析与安全评定湖北省重点实验室 武汉 430074)
目前,人员疏散模型的建模方法大致可分为2种:一种是宏观的方法,即把人群视为连续流动介质,利用Navier-Stokes控制方程来描述人群的运动,但此方法忽略了疏散人群中个体的作用和个体间的差异;另一种是微观的方法,如社会力模型[1]和元胞自动机模型[2-4].格子气模型(LGA)是元胞自动机的一种特殊形式.在格子气模型中,每个行人在栅格中被视为自主粒子.LGA可以再现拥挤的人群在疏散过程中的某些特征[5].Izquierdo等提出在模拟人员疏散过程的时候使用粒子群算法(particle swarm optimization,PSO)模型.PSO模型属于微观建模方法,将行人抽象为粒子,并利用自身最优以及群体最优的信息,不断向出口靠近并完成疏散[6].本文对PSO方法用于人员疏散进行拓展,考虑局部密度对个体最大速度和保有区域的影响,建立时空非均匀人员疏散动力学数值模型,提出理想化流程思想以及人员受伤理论.其成果可以为大型公共建筑的防灾设计、安全疏散性能评估、日常管理和应急管理提供依据.
粒子群优化算法是一种进化型算法,原始的想法是模拟一群鸟试图到达一个未知目的地(如食物位置)的社会行为[7].利用粒子群算法来模拟人群疏散的问题中,目的地就是疏散区域的某个出口,“粒子”理解为公共空间里每个移动的人.模拟过程中首先由计算机生成等同于人群数目的粒子,并随机分布在目标区域,然后粒子根据自己个体和社会行为规则,随时间进行位置更新(进化),朝向目的地移动.
在标准的PSO算法中,粒子的位置和速度的更新方程如下[8].
式中:Xi为人群的位置;Vi为人员移动的速度;Pi为第i个粒子的最好位置;Pg为群体的最好位值;c1和c2为加速因子,分别表示粒子朝向自己之前到达的最佳位置和全局最佳位置的加速权重;rand()为0到1之间的随机数;ω为惯性因子.式(2)表明,粒子速度更新由3部分组成:粒子i的速度惯性,个体最好位置的吸引,群体最好位置的吸引.
在工程优化问题中,PSO算法中的每个粒子代表一个候补解,多个候补解可以是重叠的.在人员疏散过程中,粒子是疏散区域中待疏散的个体,每个人都有自己的保有区域,其他人不能进入.因此在人员疏散模拟过程中,必须考虑人与人之间出现的位置冲突.
目前常用的CA模型中,疏散区域被划分为离散区域,每个人在每个时间步中移动的距离相同,即速度矢量的大小相同,方向也被离散,这和现实中的人员移动有较大差别.在PSO模型中,疏散区域不用划分为格子,运动空间是连续的,同时,速度具有连续性,个体速度在最大速度的限制范围内依据式(2)进行更新.
式(2)中惯性因子ω按下式确定[9]
式中:k为速度更新迭代次数.随着k的增加,ω从1减小到0.5.加速因子取为c1=3,c2=2.粒子的适应度函数选为粒子到离自身最近的出口坐标的距离,由此计算出粒子的最好位置Pi.在人员疏散问题中,最优解是已知的,即为疏散区域的出口,所以作为候补解的每个个体最终都到达疏散区域的出口.因此,将Pg定义为出口坐标.
考虑到人群移动的实际情况,粒子的速度有一个上限:Vi≤Vmax.在人员疏散过程中,人员移动的最大速度和其周围人群的密度是相关的.定义局部密度ρ为目标粒子周围2m范围内其他粒子的个数,假定粒子最大速度与局部密度ρ的关系为
每个粒子用直径为0.5m的圆来模拟,定义为个体的保有区域,当局部密度ρ较大时,保有区域可以发生变化,粒子的保有区域D与局部密度ρ的关系为
粒子之间位置冲突的解决方案见图1,在某一时间步,粒子A通过式(1)和式(2)更新,位置移动到A″,若粒子A和粒子B发生位置冲突,则改变粒子A速度矢量的大小,使得粒子A与粒子B保有区域边界正好相切,粒子A的位置从A″修正到A′.
图1 冲突解决方案示意图
利用PSO模拟人群疏散时,粒子位置更新是按照粒子编号的顺序进行的.这与实际疏散过程中的同步更新(疏散过程不受粒子编号的影响)有很大差别.本文提出理想化PSO更新规则,即:认为距离出口最近的粒子的移动是一定成立的,不需要通过冲突解决方案来修正速度.在每个时间步,按照粒子的适应度函数的大小给粒子重新编号,这样就会产生一个队列,使粒子按照队列顺序更新.需要指出的是由以上规则得到的疏散时间是所有其他规则相应结果的下限.
定义疏散区域为边长16m的正方形平面区域,出口宽度为2m,疏散人数为100人,时间步长为0.5s,下面采用PSO方法模拟疏散过程.图2中,a),b),c)3个图分别为此次模拟中1.5,4和14.5s时各个粒子所在位置.由图2a)中可见,在出口附近的粒子能快速的从疏散区域撤离,而其他的粒子也能找到自己的方向;在图2b)所示时刻,粒子开始聚集在出口附近,一部分粒子受到一定程度的挤压;图2c)所示时刻,粒子大量聚集在出口附近,大部分粒子受到严重程度的挤压.经过较多时间,所有粒子最终能全部从疏散区域撤离.
无特别说明,以下结果均为基于理想化流程的次模拟结果的平均值.图3为疏散结果与疏散总人数的关系曲线.其中均匀模型是指个体的最大速度及保有区域不变化,非均匀模型是指按式(4)和式(5)变化的情形.
图2 人员疏散模拟过程(横、纵坐标为无量纲基本单位)
疏散结果有2个指标,分别是疏散总时间与平均疏散时间.疏散总时间表示的是最后一个粒子离开疏散区域的时间,而平均疏散时间指的是粒子离开疏散区域所需时间的均值.从图3可以看到,无论是非均匀模型还是均匀模型,和CA模型一样,疏散时间与疏散总人数大致呈线性关系,平均疏散时间约为疏散总时间的一半.比较非均匀模型和均匀模型,前者的疏散时间小于后者,这是因为随着局部密度的增大,保有区域减小,使得粒子有更多的活动空间.从数值上来看,CA模型得到的疏散总时间要大于PSO模型得到的疏散总时间,这是因为PSO算法使用了理想化流程.
图3 疏散结果-疏散总人数关系曲线
基于非均匀模型疏散总人数为100人时的疏散时间频度如图4所示.由图4可见,在前面较长的时间里面,每个时间段内从疏散区域离开的粒子数目基本相同.疏散开始时,靠近出口附近的粒子先从疏散区域逃离,而后面的粒子按照队列逐个从出口逃离,离出口越近的粒子越容易逃离.这是将疏散过程理想化之后的结果,也是平均疏散时间约为疏散总时间一半的原因.
图4 疏散总人数为100人的疏散时间频度
在初始化的时候固定位置、速度、适应度函数等粒子的信息,分别分2种情况进行多次模拟,一种是理想化模拟,另一种则是非理想化模拟,即粒子的编号顺序随机.定义疏散区域为边长16m的正方形平面区域,出口宽度为2m,时间步长为0.5s,将多次模拟的结果取平均值,见图5.
图5 理想化与非理想化的比较
由图5可以看出,理想化模拟得到的疏散结果,无论是疏散总时间还是平均疏散时间都小于非理想化模拟得到的结果.在同等条件下,粒子按适应度函数从小到大的顺序排序会对整个疏散过程产生利于疏散成功的效果.每一次非理想化模拟的疏散结果差别很大,而理想化模拟得到的疏散结果基本相同.这也表明,在更新过程中,将粒子按照适应度函数从小到大排序是最利于疏散成功的,所得到的疏散结果代表疏散时间的下限.
增加疏散区域的出口,会有效减少疏散时间.以下研究出口位置对疏散过程的影响.模拟下面3种情况:a)2个宽为2m的出口,位于疏散区域的同一边上,相距4m;b)2个宽为2m的出口,分别在疏散区域的2个邻边上;c)2个宽为2m的出口,分别在疏散区域的2个对边上.
对于多个出口,Pg也对应有多个.在每个时间步,粒子分别对每个出口计算适应度函数,根据最小适应度函数来选择Pg,以此更新粒子的速度.
图6 出口位置对疏散时间的影响
在紧急疏散的情况下,人往往处于非理性状态,其运动行为容易对他人造成伤害.本文认为,在某个微小的时间段内,A个体对B个体作用的冲量大于某冲量阈值,会导致B的损伤或者受伤.
在粒子初始化时,对粒子分别赋予范围为40~90kg的质量,并引进动量与冲量的概念.定义2个参数:损伤冲量Ia和受伤冲量Ib,假定粒子的最大速度与粒子受到的冲量I之间有如下关系:
当冲量介于Ia和Ib之间,认为粒子的运动能力有所下降,若粒子最大速度等于0,则认为该人员受伤,无法移动.
如前所述,解决位置冲突时,是改变速度步长的大小.对于受伤的情形,如粒子B被粒子A冲击导致受伤,无法移动,会发生粒子A始终在粒子B旁边也无法移动的情况.此时直接让粒子A的速度矢量的方向旋转π/2,使粒子A能够绕过粒子B继续前进.
图7是基于损伤受伤模型的结果.模拟过程中,由于开始时刻出口对人员的吸引较大,粒子的速度较大,不久后便出现损伤受伤人员,见图7a);由于在出口附近拥堵,易于出现损伤人员,并一起堵塞于出口附近,见图7b);经过较长时间,堵塞现象得到解决,未受伤人员最终全部疏散成功,受伤人员则留在疏散区域内.
图7 损伤受伤模型疏散示意图(横、纵坐标为无量纲基本单位)
在受伤模拟中,损伤冲量代表的是导致人员身体损伤的冲量阈值,超过这个值,个体能力发生改变(式(6)),而受伤冲量代表的是在疏散过程人所能承受的冲量的最大值.不同损伤冲量下的人员受伤情况如表1所列,从表中发现当损伤冲量越大,平均受伤人数就越少,若增大受伤冲量而保持损伤冲量不变,那么平均受伤人数同样减少.
表1 受伤冲量为100N·s时受伤人数与损伤冲量的关系
本文建立了基于PSO算法的非均匀人群疏散动力学模型.模型考虑人员局部密度对粒子最大速度和保有区域的影响,以及粒子移动过程中位置的冲突等因素.与常用的CA模型类似,模拟结-果中的疏散时间与疏散总人数的关系接近为线性关系.本文模型还引进动量与冲量的概念,定义了粒子的损伤冲量和受伤冲量阈值,考虑了疏散过程中人员受伤的影响.
基于PSO的疏散模型考虑了人员移动速度的连续性以及人员之间的相互作用,因此模拟结果能更好的反映实际疏散情况.
[1]Helbing D,Farkas I,Vicsek T.Simulating dynamical features of escape panic[J].Nature,2000,407(6803):487-490.
[2]Zhao D L,Yang L Z,LI J.Occupants′behavior of going with the crowd based on cellular automata occupant evacuation model[J].Physica A (Statistical Mechanics and its Applications),2008,387(14):3 708-3 718.
[3]Varas A,Cornejo M D,Mainemer D,et al.Cellular automaton model for evacuation process with obstacles[J].Physica A(Statistical Mechanics and its Applications),2007,382(2):631-642.
[4]陈 晨,陈建桥.基于细胞自动机方法的车行运动模型及信号灯控制策略研究[J].武汉理工大学学报:交通科学与工程版,2010,34(2):258-261.
[5]Song W G,Xu X,Wang B H,et al.Simulation of evacuation processes using a multi-grid model for pedestrian dynamics[J].Physica A (Statistical Mechanics and its Applications),2006,363(2):492-500.
[6]Izquierdo J,Montalvo I,Pérez R,et al.Forecasting pedestrian evacuation times by using Swarm intelligence[J].Physica A (Statistical Mechanics and its Applications),2009,388(7):1 213-1 220.
[7]Kennedy J,Eberhart R C.Particle swarm optimization[C]∥IEEE International Conference on Neural Networks,Perth,WA,1995(4):1 942-1 948.
[8]Shi Y,Eberhart R C.A modified particle swarm optimizer[C]∥IEEE International Conference on Evolutionary Computation Proceedings, Anchorage,AK,1998:69-73.
[9]Jin Y X,Cheng H Z,Yan J Y,et al.New discrete method for particle swarm optimization and its application in transmission network expansion planning[J].Electric Power Systems Research,2007,77(3-4):227-233.