例说三角函数几种常用的解题技巧

2012-04-29 12:26王晚英
数学学习与研究 2012年7期
关键词:三角函数技巧解题

王晚英

【摘要】“三角函数”是中专数学的重要组成部分,同时它又是学习高等数学的基础知识.而掌握三角函数的解题技巧能增强学习三角函数知识的信心,本文通过举例说明三角函数的一些解题技巧.

【关键词】三角函数;解题;技巧

“三角函数”是中专数学的重要组成部分,它应用于很多理工专业如模具设计、机电、数控等专业的教学中,同时它又是学习高等数学的基础知识.因此学好“三角函数”是中专数学最重要的一环,而提高三角函数题型的解题能力能增强学好三角函数知识的信心,本文根据多年的教学实践就三角函数几种常用的解题技巧例说如下:

一、切割化弦

是将题中出现的正切、余切函数,正割、余割函数均化为正弦、余弦函数.

例1化简sin50°(1+3tan10°).

分析题目中含有正弦、正切,采用“切化弦”,变为仅含有正弦、余弦的三角式,然后采用引入辅助角的方法,利用两角和公式、倍角公式等变化手段将问题化简到底.

二、化弦为切

应用万能公式或将题目进行适当变形把题中所给的正弦、余弦函数化为正切、余切函数,这样就可以把问题转化为以tan为变量的“一元有理函数”,实现三角问题向代数问题转化.

例3已知tanα=2,求4sinα-2cosα5cosα+3sinα的值.

分析由已知条件可知cosα不可能为0,所以分子分母可同时除以cosα,把弦转化成切,进而把tanα的值代入式中,即可求得答案.

解原式4sinα0-2cosαcosα5cosα+3sinαcosα=4tanα-25+2tanα=611.

例4已知2sinθ+cosθsinθ-3cosθ=-5,求3cos2θ+4sin2θ的值.

分析将已知条件中正弦、余弦三角函数化为正切函数,从而解出tanθ,然后运用三角函数万能公式将所求的三角函数式用tan表示,即可解题.

解∵2sinθ+cosθsinθ-3cosθ=-5,∴cosθ≠0(否则2=-5).

∴2tanθ+1tanθ-3=-5,解得tanθ=2.

∴原式=3(1-tan1θ)1+tan2θ+4×2tanθ1+tan2θ=75.

三、角的转化

将题中的倍角、半角和(差)角化为单角,或者确定某一种角作为基本量,将其它形式的角转化为这种形式的角,这有利于解题.

例5求sin20°cos70°+sin10°sin50°的值.

分析根据三角函数结构及角度特点,可利用积化和差公式,这样会出现特殊角的函数值,还可以出现正负相消的项,从而达到求值目的.

解原式=12[sin(70°+20°)-sin(70°-20°)]-

四、升幂降幂

公式2cos2α-1=1-2sin2α=cos2α,sin2α+cos2α=1等逆顺运用可使三角函数式进行升降次,从而达到化简、证明、求值的目的.

例6化简1-cos4α-sin4α1-cos6α-sin6α.

分析化简就是使表达式经过某种变形,使结果尽可能简单,项数尽可能少,次数尽可能低,分母中尽可能不含三角函数符号,能求值一定求值.

猜你喜欢
三角函数技巧解题
用“同样多”解题
设而不求巧解题
肉兔短期增肥有技巧
用“同样多”解题
开好家长会的几点技巧
指正要有技巧
提问的技巧
高中数学教学方法略谈
略谈高中数学三角函数学习
三角函数中辅助角公式的推导及应用