一类正线性映射的可分解性*

2011-12-22 06:28
菏泽学院学报 2011年5期
关键词:数学系菏泽高阶

朱 青

(菏泽学院数学系,山东菏泽 274015)

一类正线性映射的可分解性*

朱 青

(菏泽学院数学系,山东菏泽 274015)

定义线性映射φ =φ1⊕φ2:M2(C)⊕M2(C)→M2(C)⊕M2(C)为 φ(A⊕B)=φ1(A)⊕φ2(B),∀A,B∈M2(C),其中φi(i=1,2)为M2(C)到M2(C)上的线性映射.证明了正线性映射φ=φ1⊕φ2是可分解的,并给出了co-全正映射的一个充分必要条件.

正线性映射;全正映射;co-全正映射

引言

在量子相关性的分析中,正线性映射的可分解性质对于量子映射的分析至关重要.对于线性映射:φ:Mm(C)→Mn(C),Størmer和 Woronowicz证明了 m=n=2 或 m=2,n=3 时每个正线性映射都是可分解的[1,2];Choi及Woronowicz分别在m=n=3及m=2,n=4的情况下给出了不可分解映射的例子[2,3];对于高阶情况至今未得到解决.本文针对特殊的高阶情况讨论一类正线性映射的可分解性,并给出了co-全正映射的一个充分必要条件,拓展了正线性映射可分解性的研究范围.

1 预备知识

引理1[3]令 φ:Mm(C)→Mn(C)为线性映射,则:

1)φ为正线性映射当且仅当Hφ块正;

2)φ 为全正(co-全正)映射当且仅当Hφ(HTφ)∈Mm(Mn(C))+.

2 主要结果及证明

定义线性映射φ=φ1⊕φ2:M2(C)⊕M2(C)→M2(C)⊕M2(C)为φ(A⊕B)=φ1(A)⊕φ2(B),∀A,B∈M2(C),其中φi(i=1,2)为M2(C)到M2(C)上的线性映射,可得到如下结论:正线性映射φ=φ1⊕φ2是可分解的.下面分四部分对此结论进行证明.

1)φ1,φ2为正线性映射

由φ为正线性映射,知:

从而φ1(A)∈M2(C)+,故φ1为正线性映射.同理可证φ2为正线性映射.

2)若φ1,φ2为全正映射,则φ为全正映射

对于∀k∈N,

对于任意的2 维向量 ξi,ηj(1≤i,j≤k)有:

从而φ为全正映射.

3)若φ1,φ2为co-全正映射,则φ为co-全正映射

证明过程类似于2).

4)正线性映射φ=φ1⊕φ2是可分解的

已经知道所有正线性映射φ:M2(C)→M2(C)都是可分解的[1],故φi(i=1,2)可以写成如下形式:φi=φi1+φi2,其中 φi1为全正映射,φi2为 co-全正映射.从而

则φ=φ1+φ2,由2),3)知,φ1为全正映射,φ2为co-全正映射.从而φ是可分解的.

证毕.

利用上述方法,可以证明如下两类正线性映射也是可分解的.即:

3 总结

本文针对4阶的情况,证明了几类正线性映射是可分解的.从查阅的资料来看,目前对于更高阶的情况尚未有实质性的进展,有待我们继续研究与探讨.

[1]Størmer E.Positive linear maps of operator algebras[J].Acta Math,1963,110(1):233-278.

[2]Woronowicz S.Positive maps of low dimensional matrix algebras[J].Rep.Math.Phys,1976,10(2):165-183.

[3]Choi M.Completely positive linear maps on complex matrices[J].Lin.Alg.Appl,1975,10(3):285-290.

[4]Takesaki M.Theory of operator algebra I[M].Berlin:Springer-Verlag,2002.

[5]Majewski W A,Marciniak M.On a characterization of positive maps[J].Phys.A:Math.Gen,2001,34(9):5863-5874.

Decomposable Nature of a Certain Positive Linear Map

ZHU Qing

(Department of Mathematics ,Heze University,Heze Shandong 274015,China)

A linear map φ =φ1⊕φ2:M2(C)⊕M2(C)→M2(C)⊕M2(C)is defined by φ(A⊕B)=φ1(A)⊕φ2(B)for every,A,B∈M2(C),where φi(i=1,2)is a linear map from M2(C)to M2(C).This paper proves that if φ=φ1⊕φ2is positive,then it is decomposable,and gives one equivalent condition of co-CP maps.

positive linear maps;CP maps;co-CP maps

O 177.1

A

1673-2103(2011)05-0033-03

2011-06-21

菏泽学院研究与发展项目(XY08SX01)

朱青(1982-),女,山东菏泽人,助教,硕士,研究方向:算子代数.

猜你喜欢
数学系菏泽高阶
乡村振兴的“菏泽路径”
有限图上高阶Yamabe型方程的非平凡解
高阶各向异性Cahn-Hilliard-Navier-Stokes系统的弱解
滚动轴承寿命高阶计算与应用
碳纳米锥的基于乘法度的拓扑指数
北京师范大学数学系教授葛建全
2019年底前山东菏泽境内三条高速可通车
一类完整Coriolis力作用下的高阶非线性Schrödinger方程的推导
菏泽牡丹,花开全新产业链——第27届菏泽牡丹文化旅游节盛大开幕
Constructing DHCP Using Electronic Archetypes