王锦升,沈有建,赵春茹
(海南师范大学 数学与统计学院,海南 海口 571158)
王锦升,沈有建,赵春茹
(海南师范大学 数学与统计学院,海南 海口 571158)
本文构造了Soblov空间()I(其中I为有界区间)上的一个五次B-样条插值小波基,这是一个半正交Riesz小波基.最后给出了小波基的公式.
()
I;B-样条插值小波;基
小波基构造始于Haar在1910年提出的小波规范正交基.1986年,Mallat在尺度逼近的基础上提出了多分辨分析,为小波基的构造提供了一般的途径,之后,人们据此构造出了大量的各种类型的小波基,例如正交小波基,双正交小波基等[1-6].这些小波基被广泛用于信号处理、科学计算等领域.
贾荣庆等在文[7]介绍了三次插值样条小波在广义四阶椭圆偏微分方程中的应用,米荣波在文[8]构造了五次正交样条小波.本文,我们将构造具有紧支集的五次插值样条小波,这实际上是半正交小波.
定义1 设Ω⊂Rs是Lebesgue非空可测集,f是Ω上实值Lebesgue可测函数,记
[1]米荣波.自适应小波配置法解双曲型偏微分方程[D].海南:海南师范大学,2009:21-26.
[2]Jia R Q.Approximation with scaled shift-invariant spaces by means of quasi-projection operators[J].Journal of Ap⁃proximation Theory,2004,131:30-46.
[3]Jia R Q.Bessel sequences in Sobolev spaces[J].Applied and Computational Harmonic Analysis,2006,20:298-311.
[4]Jia R Q.Spline wavelets on the interval with homoge⁃neous boundary conditions[J].Advances in Computation⁃al Mathematics,2009,30:177-200.
[5]Jia R Q.Approximation by quasi-projection operators in Besov spaces[J].Journal of Approximation Theory,2010,162:186-200.
[6]Cai W,Wang J Z.Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDFs[J].SIAM J Numer Anal,1996,33:937-970.
[7]Jia R Q,Liu S T.C1 spline wavelets on triangulations[J].Mathematics of Computation,2008,77:287-312.
[8]Jia R Q.Spline wavelets on the interval with homoge⁃neous boundary conditions[J].Advances in Computation⁃al Mathematics,2009,30:177-200.
The B-spline Interpolation Wavelet Bases in()I
WANG Jinsheng,SHEN Youjian,ZHAO Chunru
(College of Mathematics,Hainan Normal University,Haikou571158,China)
In this paper,we construct a quintic B-spline interpolation wavelet bases in(I) whereIis bounded in⁃terval,and this wavelets bases is semi-orthogonal.At the end of the paper,we gave the formula of wavelets bases.
(I) ;B-spline interpolation wavelet;bases
O 175.1
A
1674-4942(2011)01-0023-05
2010-12-02
海南省515人才工程科研启动项目;海南师范大学重点学科基金项目
毕和平