β-胡萝卜素的降解及其对食品体系的影响

2011-11-06 08:34赵小皖刘洵妤李慧勤赵国华
食品工业科技 2011年3期
关键词:热氧化异构体胡萝卜素

赵小皖,刘洵妤,李慧勤,赵国华,2,*

(1.西南大学食品科学学院,重庆400715; (2.重庆市农产品加工技术重点实验室,重庆400715)

β-胡萝卜素的降解及其对食品体系的影响

赵小皖1,刘洵妤1,李慧勤1,赵国华1,2,*

(1.西南大学食品科学学院,重庆400715; (2.重庆市农产品加工技术重点实验室,重庆400715)

β-胡萝卜素是食品中的天然色素和重要的营养物质,它在食品加工或贮藏过程中易发生降解,进而影响食品的风味、营养价值、颜色和安全性。β-胡萝卜素的降解方式主要包括热裂解、热氧化降解、化学氧化降解、光氧化降解和酶促降解等,其降解产物和降解方式与降解条件关系密切。影响β-胡萝卜素降解的主要因素包括氧气、食品添加物和水分活度。今后应重点研究微生物发酵、食品成分以及加工技术对β-胡萝卜素降解的影响,以及防止食品中β-胡萝卜素降解的措施和β-胡萝卜素降解产物风险性评估。

β-胡萝卜素,降解方式,影响因素,影响,食品加工

1 β-胡萝卜素的降解方式

以β-胡萝卜素为代表的类胡萝卜素对光、热、氧等十分敏感,容易发生降解反应。β-胡萝卜素在食品中的降解方式主要有热裂解、热氧化降解、化学氧化降解、光氧化降解和酶促降解等。β-胡萝卜素的降解产物随降解方式不同而各异。在同一降解方式下,反应条件(反应时间、温度等)的不同也会导致降解产物的变化[3]。图1总结了β-胡萝卜素在食品加工中的降解作用。

1.1 热裂解

β-胡萝卜素热裂解主要指在绝氧高热作用(如深层油炸)下生成环氧化合物、短链物质、挥发性物质等成分,使食品的风味和颜色都发生不同程度的变化。油脂在挤压蒸煮和高温加热的精炼过程中,β-胡萝卜素不仅会发生异构化,而且发生热降解[4]。因此,精炼油中β-胡萝卜素的含量很低。对食品中β-胡萝卜素在高温下裂解时形成的产物进行了研究,结果表明β-胡萝卜素的高温裂解是一个十分复杂的过程,其产物种类繁多,而且裂解的温度不同,裂解时所得到的产物也不相同。在相对较低的温度(300~500℃)下进行裂解时,形成芳香物质β-紫罗兰酮和二氢猕猴桃内酯等;到600℃时萘、蒽和菲等稠环化合物的含量迅速增加;到800℃时,产物基本上是苯、甲苯、二甲苯、乙基苯等芳环化合物以及萘、蒽和菲等稠环化合物。

图1 β-胡萝卜素的降解反应

1.2 热氧化降解

β-胡萝卜素热氧化降解的基本历程是先发生氧化作用后再发生降解,主要生成具有还原性的顺式异构体。β-胡萝卜素在分子氧存在下主要发生异构化作用、裂解作用和环氧化作用。异构化作用生成的β-胡萝卜素异构体主要是13-顺,9-顺,2-顺异构体;发生裂解反应时生成的主要裂解产物是β-脂蛋白-13-胡萝卜素酮和β-脂蛋白-14-胡萝卜醛;环氧化作用下主要产生β-胡萝卜素5,8-环氧化物和β-胡萝卜素5,8-内过氧化物。Marx等[5]研究发现巴氏杀菌和121℃处理胡萝卜汁时只会产生极少量的顺式异构体,但顺式异构体的含量在130℃处理的样品中急剧增加;研究发现红花籽油中的全反-β-胡萝卜素和9-顺-β-胡萝卜素在75℃或85℃加热24h或12h后生成的主要是13-顺,9-顺-异构体和一种不能辨别的顺式异构体;Claudie等[6]研究得出柑橘汁中β-胡萝卜素热氧化降解的活化能为110kJ·mol-1;Chandler和Schwartz[7]的实验也发现β-胡萝卜素在加热过程能转变成13-顺-异构体和9-顺-异构体;Aman等[8]研究了新鲜菠菜在加热时β-胡萝卜素主要降解为9-顺-异构体而不是通常的13-顺-异构体;Dietz等[9]用反相HPLC研究了热处理对生菜、菠菜、四棱豆叶子和胡萝卜中β-胡萝卜素的影响,结果发现水煮30min可以使生菜和胡萝卜中β-胡萝卜素分别降解53%和40%,然而,水煮的四棱豆叶子和菠菜中β-胡萝卜素的含量不但没有降低甚至有所增加。同时发现,蒸汽加热(30min)时所有蔬菜中β-胡萝卜素都得到了很好的保存(83%~139%)。

1.3 化学氧化降解

β-胡萝卜素的化学氧化降解是先发生氧化作用后再发生降解,生成β-胡萝卜素5,6-环氧化合物,再进一步氧化生成相对分子量较低的降解产物。β-胡萝卜素化学氧化降解获得的产物具有良好的气味。利用从植物中提取纯化得到的类胡萝卜素混合物通过化学氧化降解制成的风味物质可以广泛应用于化妆品等行业。Enzell等[10]研究发现类胡萝卜素在碱性高锰酸盐氧化作用下,β-胡萝卜素主要在7,8双键处断裂,生成C30环氧羟醛(5,6-环氧-5,6-二氢-8-脂蛋白-β-胡萝卜素-8-醛)。Isoe等[11]报道了在β-胡萝卜素的苯和甲醇溶液中加入催化量的碱和玫瑰红,然后用30W的荧光灯照射48h,开始时溶液的暗棕色变成了淡红色,说明β-胡萝卜素发生了降解。

1.4 光氧化降解

β-胡萝卜素的光氧化降解遵循一级反应动力学模型LnC=LnC0-(k)(t),主要是先在光线的辅助下发生氧化作用后再发生降解,生成β-胡萝卜素5,8-呋喃型化合物,进一步氧化生成低相对分子量的降解产物(图2)。

图2 β-胡萝卜素的光氧化降解反应

当食品受到光、紫外光或散射光照射时,食品中的油脂会发生光氧化而产生自由基,β-胡萝卜素作为抗氧化剂在清除自由基的同时被降解,导致食品褪色。因此,暴光对富含β-胡萝卜素食品的影响极为重要。但热处理温度和环境氧浓度对β-胡萝卜素的光氧化降解影响非常大。Pesek等[12]研究发现将用透明容器包装的胡萝卜汁暴露于4℃、230ft-c光照条件下8d,β-胡萝卜素的光氧化降解速率常数为0.309±0.044/d,且胡萝卜汁颜色的减退速率和β-胡萝卜素的降解速率呈高度正相关(r2=0.97);紫外光照射含有玫瑰红、亚甲基蓝或正十二烷酸等光敏剂的食品会导致其中的β-胡萝卜素发生快速氧化降解;红茶、西红柿、香油等中的二氢猕猴桃内酯也已被证实是通过β-胡萝卜素、β-紫罗酮和反-β-紫罗兰醇的光氧化降解形成的;另外,研究表明食品中β-胡萝卜素的光氧化降解可转化成为玉米黄素、隐黄素、脱氢胡萝卜素等产物;透明包装的果蔬干制品在贮藏过程中的褪色也是其中β-胡萝卜素光氧化降解的结果。

1.5 酶促降解

图3 β胡萝卜素生物氧化降解途径

2 影响β-胡萝卜素降解的因素

2.1 氧气

2.2 添加物

2.3 水分活度

3 β-胡萝卜素降解对食品体系的影响

3.1 改善食品的风味

3.2 导致食品褪色

3.3 降低食品的营养价值

4 展望

虽然有关β-胡萝卜素降解的研究报道已有很多,诸多实验也证实了β-胡萝卜素的降解对食品的影响,但是由于其降解机制的复杂性,进一步的深入研究尤为重要。纵观已有的研究,下一步的研究工作应集中在:β-胡萝卜素降解产物风险性评估;微生物发酵和食品成分对食品中β-胡萝卜素降解的影响;β-胡萝卜素各种降解产物的鉴定和降解机理明晰;防止食品中β-胡萝卜素降解的措施研究。

[1]Hurst J S,Saini M K,Jin G-F,et al.Toxicity of oxidized β-carotene to cultured human cells[J].Experimental Eye Research,2005,81(2):239-243.

[2]Paola P,Simona S,Nicola M,et al.Induction of cell cycle arrest and apoptosis in human colon adenocarcinoma cell lines by beta-carotene through down-regulation of cyclin A and Bcl-2 family proteins[J].Carcinogenesis,2002,23(1):8-11.

[3]Zepkal L Q,Borsarelli C D,Azevedo M A,et al.Thermal degradation kinetics of carotenoids in a cashew apple juice model and its impact on the system color[J].Journal of Agricultural and Food Chemistry,2009,57(17):7841-7845.

[4]Lalel H J D,Singh Z,Tan S C.Ripening temperatures influence biosynthesis of aroma volatile compounds in‘Kensington Pride’mango fruit[J].Journal of Agricultural Science and Biotechnology,2004,79(1):146-157.

[5]Marx M,Stuparic M,Schieber A,et al.Effects of thermal processing on trans-cis-isomerization of β-carotene in carrot juices and carotene-containing preparations[J].Food Chemistry,2003,83(4):609-617.

[6]Claudie D M,Tbatou M,Carail M,et al.Thermal degradation of antioxidant micronutrients in citrus:kinetics and newly formed compounds[J].Jouranl of Agricultural and Food Chemistry,2007,55(10):4209-4216.

[7]Chandler L A,Schwartz S J.Isomerization and losses of transβ-carotene in sweet potatoes as affected by processing treatments[J].Journal of Agricultural and Food Chemistry,1988,36: 129-133.

[8]Aman R,Schieber A,Carle R.Effects of heating and illumination on trans-cis isomerization and degradation of β-carotene and lutein in isolated spinach chloroplasts[J].Journal of Agricultural and Food Chemistry,2005,53(24):9512-9518.

[9]Dietz J M,Sachi S K,Erdman J W.Reversed phase HPLC analysis of α-and β-carotene from selected raw and cooked vegetables[J].Plant Foods for Human Nutrition,1988,38(4): 333-341.

[10]Enzell C.Biodegradation of carotenoids-an important route to aroma compounds[J].Pure and Applied Chemistry,1985,57(5): 693-700.

[11]Isoe S,Hyeon S B,Sakan T.Photo-oxygenation of carotenoids(I).The Formation ofdihydroactinidiolideand β-ionone from β-carotene[J].Tetrahedron Letters,1969,10 (4):279-281.

[12]Pesek C A,Warthesen J J.Photo-degradation of carotenoids in a vegetable juice system[J].Journal of Food Science,2006,52 (3):744-746.

[13]Winterhalter P,Rouseff R.Carotenoid-derived aroma compounds:an introduction[M].Washington DC:ACS Symposium Series,2001:1-17.

[14]Baldermann S,Naim M,Fleischmann P.Enzymatic carotenoid degradation and aroma formation in nectarines(Prunus persical)[J].Food Research International,2005,38(8-9):833-836.

[15]Simkin A J,Underwood B A,Auldridge M,et al.Circadian regulation of the PhCCD1carotenoid cleavage dioxygenase controls emission of beta-ionone,a fragrance volatile of petunia flowers[J].Plant Physiology,2004,136(3):3504-3514.

[16]Scheibner M,Hulsdau B,Zelena K,et al.Novel peroxidases of marasmius scorodonius degrade β-carotene[J].Applied Microbiology Biotechnology,2008,77(6):1241-1250.

[17]Leolak H,Liluh P N,Manuel J G,et al.Effects of oxygen on the degradation of carotenoids in an aqueous model system[J]. Journal of Agricultural and Food Chemistry,2000,48(10):5008 -5013.

[18]Goldman M,Horev B,Saguy I.Decolorization of β-carotene in model systems simulating dehydrated foods.mechanism and kinetic principles[J].Journal of Food Science,2006,48(3):751 -754.

[19]Mortensen A,Skibsted L H.Kinetics and mechanism of the primary steps ofdegradation ofcarotenoids by acid in homogeneous solution[J].Journal of Agricultural and Food Chemistry,2000,48:279-286.

[20]Sommerburg O,Langhans C D,Arnhold J,et al.β-Carotene cleavage products after oxidation mediated by hypochlorous acida model for neutrophil-derived degradation[J].Free Radical Biology and Medicine,2003,35(11):1480-1490.

[21]Assuncao R B,Mercadante A Z.Carotenoids and ascorbic acid composition from commercial products of cashew apple[J]. Journal of Food Composition and Analysis,2003,16(64): 647-657.

[22]Zepka L Q,Mercadante A Z.Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice[J].Food Chemistry,2009,117(1):28-34.

[23]Ramakrishnan T V,Francis F J.Stability of Carotenoids in Model Aqueous Systems[J].Journal of Food Quality,2007,2(3): 177-189.

[24]Addis G,Baskaran R,Raju M,et al.Effect of blanching and dryingprocess on carotenoids composition ofunderutilized ethiopian(Coccinia grandis L.voigt)and indian(Trigonella foenum-graecum L.)Green Leafy Vegetables[J].Journal of Food Processing and Preservation,2009,33(6):744-762.

[25]Davey M W,Mellidou I,Keulemans W.Considerations to prevent the breakdown and loss of fruit carotenoids during extraction and analysis in musa[J].Journal of Chromatography A,2009,1216(30):5759-5762.

[26]Uenojo M,Marostica M R,Pastore G M.Carotenoids: properties,applications and biotransformation in flavor compounds[J].Quimica Nova,2007,30(3):616-622.

[27]Wache Y,Aurelie B D,Lhuguenot J C,et al.Effect of cis/ trans isomerism of β-carotene on the ratios of volatile compounds produced during oxidative degradation[J].Journal of Agricultural and Food Chemistry,2003,51(7):1984-1987.

[28]Bouvier F,Suire C,Mutterer J,et al.Oxidative remodelling of chromoplast carotenoids:identification of a carotenoid cleavage dioxygenase CsCCD and CsZCD genesinvolved in crocus secondary metabolite biogenesis[J].The Plant Cell,2003,15: 47-62.

Degradation of β-carotene and its influence in foods

ZHAO Xiao-wan1,LIU Xun-yu1,LI Hui-qin1,ZHAO Guo-hua1,2,*
(1.College of Food Science,Southwest University,Chongqing 400715,China; 2.Chongqing Key Laboratory of Agricultural Products Processing,Chongqing 400715,China)

β-carotene is a natural pigment and an important nutrient in food,which easily tends to degradation during food processing and storage,and thus affects the flavor,nutritional value,color and safety of the foods.The degradation methods of β-carotene include thermo-oxidative degradation,thermal cracking,chemical oxidation degradation,photo-oxidation degradation and enzymatic degradation,etc.The degradation products and methods contact with the degradation conditions closely.The main factors of the degradation are oxygen,food additives and water activity.Further researches should focus on the impacts of the microbial fermentation,food ingredients and processing technology on the degradation of β-carotene,the effect methods to prevent the degradation of β-carotene in foods and risk assessments of the degradation products of β-carotene.

β-carotene;the methods of degradation;impact factors;impact;food processing

TS202.3

A

1002-0306(2011)03-0417-05

β-胡萝卜素是来源于植物、盐藻和微生物的一种天然色素,是一种脂溶性化合物。β-胡萝卜素在人体内可以转变成维生素A,它在人类的营养中具有重要地位。另外,大量实验表明,β-胡萝卜素是一种优良的抗氧化剂,它对防止食品体系氧化、清除人体内自由基以及防止由此引起的氧化衰老有明显的作用[1]。同时,也有研究表明β-胡萝卜素还具有增强机体免疫力、抗癌等功能[2]。鉴于此,研究β-胡萝卜素在食品加工过程中的变化及由此带来的对食品品质的影响就显得格外重要。文章在广泛查阅文献的基础上,综述了β-胡萝卜素在食品加工过程中的降解,以期推动和加深我国在此领域的研究。

2010-02-04 *通讯联系人

赵小皖(1984-),女,硕士研究生,研究方向:食品化学与营养学。

猜你喜欢
热氧化异构体胡萝卜素
热氧化对TA18钛合金耐腐蚀磨损性能的影响*
跨域异构体系对抗联合仿真试验平台
简析旋光异构体平面分析和构象分析的一致性
合成酯类油热氧化性能衰变规律研究
利奈唑胺原料药中R型异构体的手性HPLC分析
CPU+GPU异构体系混合编程模式研究
β-胡萝卜素微乳液的体外抗氧化性初探
Al、Sn掺杂对于ZnO薄膜微结构及光学特性的影响
热氧化处理对纯钛耐腐蚀性能影响的研究
RP-HPLC法测定螺旋藻中β-胡萝卜素的含量