秦喜梅, 钱 云
(巢湖学院数学系,安徽巢湖 238000)
双连续N次积分C-半群的逼近定理
秦喜梅, 钱 云
(巢湖学院数学系,安徽巢湖 238000)
在C0半群和双连续半群逼近定理的启发下,讨论了双连续n次积分C-半群的逼近定理.
双连续;n次积分C-半群;双等度连续;生成元
近年来对有界连续(或一致连续)函数空间上半群的研究,引起了人们对Banach空间上非强连续半群的研究.Kǔhnemund在Banach空间上另外附加一个比范数拓扑粗的局部凸拓扑,使得半群在这个局部凸拓扑下强连续,由此提出了双连续半群的概念,为半群理论的研究开辟了新的研究领域,说明了双连续半群理论有很好的前景和研究价值.
本文讨论的双连续n次积分C-半群所在的空间要满足:
设(X,‖·‖)是Banach空间,其共轭空间是X′,τ是X上的一个局部凸拓扑并具有如下性质:
(i)空间(X,τ)在‖·‖-有界集上序列完备,即每个‖·‖-有界的τ-柯西列在(X,τ)中收敛;
(ii)拓扑τ比‖·‖-拓扑粗且τ是Hausdorff拓扑;
(iii)空间(X,‖·‖)中的范数可由空间(X,τ)′定义,即对每个x∈X,有
为了方便,记Φ={φ∈(X,τ)′∶‖φ‖(X,‖·‖)′≤1}.Pτ表示X上的局部凸τ拓扑τ所对应的半范数族.由约定,不失一般性,假定p(x)≤‖x‖,∀x∈X,p∈Pτ.
如不特别说明,本文中的积分均是在τ-拓扑意义下的积分,算子C∈B(X)为单射.
下面给出双连续n次积分C-半群的定义.以下记(M,ω,C)表示空间X上的指数有界的双连续n次分C-半群全体.
一般情形可以由归纳法证明.
(ii)由(i)易证.
(iii)由(i)知对任意x∈D(An+1),有
对上式两端关于t再求一次导数,得
[1]Albanese A,Mangino E.Trotter-Kato theorems for bi-continuous semigroups and applications to Feller semigroups[J].J.Math.Anal.Appl.,2004,289(2):477-492.
[2]Kǔhnemund F.A Hille-Yosida theorem for bi-continuous semigroups[J].Semigroup Forum,2003,67(2):205-225.
[3]Xiao Tijun,Liang Jin.Approximation of Lapace transforms and integrated semigroups[J].Joural of Function Analysis,2000,172(1):202-220.
[4]Liang Jin,Xiao Tijun.Higher order abstract Cauchy problem:their existence and uniqueness families[J].J.London Math.Soc.,2003,67(1):149-164.
[5]Liang Jin,Xiao Tijun,Li Fang.Multiplicative perturbations of localC-regularized semigroups[J].Semigroup Forum,2006,72(3):375-386.
[6]Sun Guozheng.Representation theorem for mildC-existence families[J].Northeast Math.,1999,15(4):469-472.
[7]Delaubenfels R.,Sun Guozheng,Wang Shengwang.Regularized semigroups,existence families and the abstract Cauchy problem[J].Differential Integral Equations,1995,8(6):1477-1496.
[8]Lizama C.On the convergence and approximation of integrated semigroups[J].Math.Anal.Appl.,1994,181(1):89-103.
[9]Zheng Quan.Perturbation and approximations of integratedC-semigroups[J].Acta.Math.Sinica,New Series,1993,9(3):252-260.
[10]秦喜梅,葛国菊.指数有界的双连续n次积分C-半群及其生成逼近定理[J].大学数学,2008,24(3):104-111.
The Approximation Theorem for Bi-ContinuousN-times IntegratedC-Semigroups
QINXi-mei,QIANYun
(Department of Mathematics,Chaohu College,Chaohu Anhui 238000,China)
Inspired by the approximation theorems forC0semigroups and bi-continuous semigroups,we discuss the approximation theorems for bi-continuousntimes integratedC-semigroups.
bi-continuous;Ntimes integratedC-semigroup;bi-equicontinuous;generator
O177
A
1672-1454(2011)04-0103-05
2008-09-09
安徽省教育厅自然科学研究项目(KJ2010B127;KJ2009B097)