◆史达龙
(秦皇岛经济技术开发区深河中学)
数学学习方法及其指导
◆史达龙
(秦皇岛经济技术开发区深河中学)
数学作为一种文化,对人的全面素质的提高具有巨大的影响。因此,提高基础教育中的数学教学质量,就显得尤为重要。可目前,由于受“应试教育”的影响,数学教学中违背教育规律的现象和做法时有发生,为此更新数学教学思想、完善数学教学方法就显得更加迫切。
数学学习 学习方法 学法指导
在教会学生会学习、提高学生自学能力的学法指导的研究和实践已是基础教育改革的一个热门课题。这一课题的提出和研究,不仅对当前提高基础教育质量、实施素质教育具有现实意义,而且对培养未来社会发展所需要的人才、促进科教兴国具有历史意义。随着社会、经济、科技的高速发展,数学的应用越来越广,地位越来越高,作用越来越大。不仅如此,数学教育的实践和历史还表明,数学作为一种文化,对人的全面素质的提高具有巨大的影响。
因此,提高基础教育中的数学教学质量,就显得尤为重要。可目前,由于受“应试教育”的影响,数学教学中违背教育规律的现象和做法时有发生。为此,更新数学教学思想、完善数学教学方法就显得更加迫切。在数学教学中,开展学法指导,正是改革数学教学的一个突破口。
1.对数学教学如何实施数学学习方法的指导,人们进行了许多有益的探索和实验。首先,是通过观察、调查,归纳总结了中学生数学学习中存在的问题,如“学习懒散,不肯动脑;不订计划,惯性运转;忽视预习,坐等上课;不会听课,事倍功半;死记硬背,机械模仿;不懂不问,一知半解;不重基础,好高骛远;赶做作业,不会自学;不重总结,轻视复习”,等等。针对这些问题,提出了相应的数学学法指导的途径和方法。如数学全程渗透式 (将学法指导渗透于制订计划、课前预习、课堂学习、课后复习、独立作业、学习总结、课外学习等各个学习环节之中)建立数学学习常规(课堂常规— —情境美,参与高,求卓越,求效率;课后常规— —认真读书,整理笔记,深思熟虑,勇于质疑;作业常规— —先复习,后作业,字迹清楚,表述规范,计算正确,填好《作业检测表》,重做错题,等等。
2.从数学的角度出发,就是要考察数学的特点。关于数学的特点,虽仍有争议,但传统或者说比较科学的提法仍是 3条:高度的抽象性、逻辑的严谨性和应用的广泛性。
(1)数学研究的对象本来是现实的,但由于数学仅从空间形式与数量关系方面来反映客观现实,所以数学是逐级抽象的产物。比如,三角形形状的实物模型随处可见,多种多样,名目繁多,但数学中的“三角形”却是一种抽象的思维形式(概念),撇开了人们常见的各种三角形形状实物的诸多性质(如天然属性、物理性质等)。因此,学习数学首当其冲的是要学习抽象。而抽象又离不开概括,也离不开比较和分类,可以说比较、分类、概括是抽象的基础和前提。
(2)数学结论的可靠性有其严格的要求,观察和实验不能作为论证的依据和方法,而是要经过逻辑推理(表现为证明或计算),方能得以承认。
(3)由于任何客观对象都有其空间形式和数量关系,因而从理论上说以空间形式与数量关系为研究对象的数学可以应用于客观世界的一切领域,即可谓宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学。应用数学解决问题,不但首先要提出问题,并用明确的语言加以表述,而且要建立数学模型,还要对数学模型进行数学推导和论证,对数学结果进行检验和评价。也就是说,数学之应用,它不仅表现为一种工具,一种语言,而且是一种方法,是一种思维模式。根据数学应用的广泛性特点,数学学法指导还要指导学生建立和操作数学模型,以及进行检验和评价。
3.从数学学习的角度出发,就是要通过对数学学习过程的考察,引申出数学学法指导的内容和策略
关于数学学习的过程,比较新颖的观点是:“在原有行为结构与认知结构的基础上,或是将环境对象纳入其间 (同化),或是因环境作用而引起原有结构的改变(顺应),于是形成新的行为结构与认知结构,如此不断往复,直到达成相对的适应性平衡”。通过对这一认识的分析和理解,就数学学法指导而言,引申出数学学法指导的内容和策略。
4.根据数学内容的性质,数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等 5类。相应地,数学学法指导的实施亦需分别落实到这 5类教学之中。这里仅就例题教学中如何实施数学学法指导谈谈自己的认识。
(1)根据学生的学情安排例题。如前所述,学习新知必须建立在已有的基础之上,从内容上讲,这个基础既包括知识基础,又包括认知水平和认知能力,还包括学习兴趣、认知意识,乃至学习态度等有关学习动力系统方面的准备。因此,无论是选配例题,还是安排例题,都要考虑到学生的学习情况,尤其是要考虑激发学生认知兴趣和认知需求的原则(称之为动机原则)。在例题选配和安排中,可采取增、删、调的策略,力求既突出重点,又符合学生的学情。所谓增,即根据学生的认知缺陷增补铺垫性例题,或者为突破某个难点增加过渡性例题。所谓删,即根据学生情况,删去比较简单的例题或要求过高的难题。所谓调,即根据学生的实际水平,将后面的例题调至前面先教,或者将前面的例题调到后面后教。
(2)根据学习目标和任务精选例题。例题的作用是多方面的,最基本的莫过于理解知识,应用知识,巩固知识;莫过于训练数学技能,培养数学能力,发展数学观念。为发挥例题的这些基本作用,就要根据学习目标和任务选配例题。具体的策略是:增、删、并。这里的增,即为突出某个知识点、某项数学技能、某种数学能力等重点内容而增补强化性例题,或者根据联系社会发展的需要,增加补充性例题。这里的删,即指删去那些作用不大或者过时的例题。所谓并,即为突出某项内容把单元内前后的几个例题合并为一个例题,或者为突出知识间的联系打破单元界限而把不同内容的例题综合在一起。
(3)根据解题的心理过程设计例题教学程序。按照波利亚的解题理论,一般把解题过程分为弄清问题、拟定计划、实现计划、回顾等 4个阶段。这是针对解题过程本身而言的。但就解题教学来说,还应当增加一个步骤,也是首要环节,即要使学生“进入问题情境”,让学生产生一种认知的需要。对于“进入问题情境”环节,要求教师用简短的语言,在承上启下中,提出学习目标,明确学习任务,激起认知冲突。而对其余 4个环节,教师的行为可按波利亚的“怎样解题表”中的要求去构思。一般教师和学生都能够注意做到做好前 3个环节,却容易忽视“回顾”环节。严格说来,回顾环节对解题能力的提高,对例题教学目的的实现起着不可替代的作用。对回顾环节来讲,除波利亚提出的几条以外,更为主要的是对解题方法的概括和反思,并使其能迁移到其它问题的解决之中。