杨令康 朱汉华 贺立峰
(武汉理工大学能源与动力工程学院 武汉 430063)
大型旋转机械中转子与定子之间的碰摩是一种严重的故障现象.船舶轴系的在运行过程中,受到来自柴油机和船体外部的螺旋桨的周期激励作用,另外由于船舶尾轴自身的重力作用,使得尾轴的运行工况复杂,轴承与轴颈之间的碰撞与摩擦更是常见的现象.对于油膜震荡引起的转子失稳、分岔、碰摩问题一直是国内外学者关注的焦点问题.如袁惠群等研究了具有非线性碰摩力的转子局部碰摩的分岔与混沌运动,并与实验结果进行比较[1].罗跃纲等构造了具有碰摩故障转子-轴承系统的动力学模型,同时考虑转轴非线性弹性力和轴承油膜力的共同作用,对系统运行过程进行数值仿真分析[2].Chu F.等研究了转子-轴承系统发生转定子碰摩时的振动特性,揭示了系统进入和离开混沌的路径[3].Shen Xiaoyao和Jia Jiuhong等[4-5]对转子弯曲和质量不平衡时的碰摩进行了研究.另外,转子-轴承系统中密封力也影响着转子的动力学行为[6],所以在研究转子-轴承系统的碰摩特性时考虑系统密封力的作用,显得更加重要.借助非线性动力学的理论和数值分析的方法,综合国内外转子碰摩的研究成果,在同时考虑轴承非线性油膜力、碰摩力和密封力耦合作用的基础上,建立了轴承-转子-密封系统的碰摩动力学模型,分析系统的非线性动力学特性.
建立如图1所示的转子-轴承系统动力学模型,转子两端采用滑动轴承支承,转轴在左、右端轴承处的集中质量分别为m1和m3,在圆盘处的等效集中质量为,圆盘与轴承之间为无质量弹性轴连接.右端采用长轴承油膜力模型,左短采用短轴承油膜力模型.其中:f1x,f1y为左端滑动轴承作用在轴颈上的油膜力;f2x,f2y为右端滑动轴承作用在轴颈上的油膜力.由于船舶尾轴自身的重力和外面悬挂螺旋桨的重力作用,使得右轴承与轴颈间的碰摩现象经常发生,故碰摩力Px,Py作用在右轴承处.利用功的互等定理,将密封激振力Fx,Fy等效作用在右轴承处.O1为左轴承的几何中心,O2为圆盘的几何中心,为圆盘的质心,O3为右轴承的几何中心.
图1 转子-轴承系统碰摩动力学模型
1)端滑动轴承作用在轴颈上的油膜力f1x,f1y采用短轴承假设条件[7],其油膜力表达式为
2)由于一般情况下船舶尾轴的长径比较大,故右端轴承采用长轴承理论计算,这时认为由于油膜压力沿周向的变化率比沿轴向的大得多,得到长轴承模型的Reynolds方程为[8]
按长轴承理论计算径向油膜力Fe和切向油膜力Fφ的公式为
式中
右端轴承的油膜力的水平分量f2x、铅垂分量f2y于径向油膜力Fe、切向油膜力Fφ之间的关系为
假设滑动轴承与轴颈之间的间隙为δ,当转轴与定子发生碰摩时,不考虑摩擦产生的热效应.且假定碰撞过程为弹性变形,则碰摩力表达式为[9]
密封力即转子-轴承-密封系统中流体激振力是影响转子运动特性诸多因素中不可忽视的一个,Muszynska密封力模型认为流体作用力与流体一起以平均角速度τω转动,同时也表达了密封力对转子的扰动运动具有惯性效应、阻尼效应和刚度效应,能较好地反映密封力的非线性特性,其正确性在应用中得到了普遍认可[10].其模型为
式中:K,D,mf分别为密封力的当量刚度、当量阻尼和当量质量;K,D,t均为扰动位移X3,Y3的非线性函数.其表达式为
设转子-轴承系统的左端的径向位移为x1,y1转盘处的径向位移为x2,y2,右端的径向位移为x3,y3.则系统的运动微分方程可以表示为
从运动方程式(9)可以看出,碰摩转子-轴承系统的非线性油膜力、碰摩力和密封力具有强非线性的特性,很难得到解析解,故采用数值仿真方法来分析系统在不同参数下的振动响应,从而说明系统的润滑与碰摩的非线性动力学行为特性.
设置系统的参数为:m1=100kg,m2=80 kg,m3=200kg,c1=5 000N·s·m-1,c2=2 000N·s·m-1,k=5×106N/m,c=0.2mm,r=0.06mm,δ=0.2mm,kc=5×106N/m,f=0.1.从图2中可以看出碰摩转子系统响应存在着倍周期运动、拟周期运动和混沌运动等复杂的非线性特性.随着激励频率的提高,系统经历了由单倍周期运动、多倍周期运动、拟周期运动到混沌运动的过程.为了更加清晰地了解这些运动,选取不同激励频率下的时程图、频谱图、转子中心轨迹图和映射图来分析.
图2 碰摩转子响应随激励频率ω变化的分岔图
图3 ω=266rad/s时碰摩转子系统响应
图4 ω=346rad/s时碰摩转子系统响应
图5 ω=464rad/s时碰摩转子系统响应
图6 ω=576rad/s时碰摩转子系统响应
从图3可以看出转子系统做周期1运动,转子的运动轨迹呈现一个封闭的圆,频谱图上出现一个明显的峰值,映射图上只出现一个映射点.随着转速的增加出现拟周期运动,如图4所示:轴心轨线围绕周期轨道形成非常接近但不重复的轨线族,映射图上存在不变环面吸引点,代表出现拟周期运动.当转速提高到ω=464rad/s时,碰摩转子系统又呈现出2倍周期运动如图5所示,时程图上中的波形具有明显的周期重复性,且不同于一般的正弦或者余弦波形,这是由于碰摩转子系统的振动具有较强的非线性所致;在频谱图上出现了2个明显的尖峰,映射图上有2个孤立的映射点,轴心轨迹线呈现出2个不重合的圆更加说明了转子响应处于周期2运动状态.随着转速的提高,当转速到达ω=576rad/s时碰摩转子响应出现了混沌运动的特证如图6所示,与周期运动的离散映射点和拟周期运动的连续封闭曲线完全不同,映射图存在奇怪吸引子图形,代表着混沌运动;幅值频谱图上出现一些较明显的不可公约连续谱成分,而且频带较宽,这些足以说明此时转子已离开周期2运动,进入到混沌运动.
运用数值方法分析了具有非线性碰摩力的转子-轴承-密封系统的响应的分岔和混沌行为,同时考虑了轴承油膜力、碰摩力和密封力的耦合作图和庞加莱映射图从不同的侧面描述和揭示了用,数值仿真结果分别用时程图、频谱图、根轨迹转子系统的周期运动、拟周期运动和混沌运动和这些运动形式的转化与演变过程.在所研究的转子频率范围内,通过对碰摩转子系统的响应的研究发现:由于碰摩力矩与转子涡动的方向相反,摩擦会引起转子反向涡动,随着转速的提高转子响应呈现出拟周期和倍周期运动交替出现的现象,最后转子响应以混沌运动为主,形成了相对稳定的混沌运动的频率域范围.
[1]袁惠群,闻邦椿,王德友.非线性碰摩力对碰摩转子分叉与混沌行为的影响[J].应用力学学报,2001(12):16-19.
[2]罗跃纲,张松鹤,闻邦椿.非线性弹性转子-轴承系统碰摩的动态响应[J].振动工程学报,2004(8):91-93.
[3]Chu F,Zhang Z.Bifurcation and shaos in a rub-impact Jeffcott rotor system[J].Journal of Sound and Vibration,1998:210(1):1-18.
[4]Shen Xiaoyao,Jia Jiuhong,Zhao Mei.Nonlinear analysis of a rub-impact rotor-bearing system with initial permanent rotor bow[J].Arch Appl Mech,2008,78:225-240.
[5]Shen Xiaoyao,Jia Jiuhong,Zhao Mei.Numerical analysis of a rub-impact rotor-bearing system with mass unbalance[J].Journal of Vibration and Control,2007,13:1819-1834.
[6]Mei Cheng,Guang Meng,Jiangping Jing.Non-linear dynamics of a rotor-bearing-seal system[J].Arch Appl Mech,2006,76:215-227.
[7]Adiletta G,Guido A R,Rossi C.Chaotic motions of a rigid rotor in short journal bearings[J].Nonlinear Dynamics.1996:10(6),251-269.
[8]刘淑莲.转子-轴承系统非线性特性研究及油膜振荡的在线清除[D].杭州:浙江大学材料化工学院化工机械研究所,2004.
[9]闻邦椿,顾家柳,夏松波.高等转子动力学[M].北京:机械工业出版社,2000.
[10]Muszynska A,Bently D E.Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor-bearing-seal systems and fluid handling machines[J].J Sound Vib.,1990,143(1):103-124.