新课程下的高中数学教学

2009-06-07 08:29韩世稳
新课程·中学 2009年12期
关键词:可接受性图象例题

韩世稳

新课程下教师的教学策略要实现新转变,由重知识传播向学生发展转变,由重教师教学内容选择向重学生学习方法指导转变,由统一规格教育向差异性教育转变。教师在教学方法上要有新的突破,在课堂教学的设计上要多下工夫。

一、研究新教材,把握好教学中的“度”

1.重视知识的发生过程,淡化纯理论和学生难以接受的东西

如以生动的数学故事和数学史话引入课题,以便创造出一个良好的学习氛围,使数学学习摆脱枯燥,抽象和脱离实际的现象。同时删去学生难以接受的,纯理论的知识。想方设法的去展示数学知识的发生过程。

2.夯实双基

课堂教学应把主要精力用于将最基础的东西讲深、讲透。对于基础知识,教师往往认为每天在讲基础,但我认为某些教师还没有真正做到重视基础,至少把基础知识没有讲透。

不论是优生和差生,当学生做出某一题时,他都会感到自然、轻松,有一种成功的喜悦,然而这些成功都是靠他对基础的基本的知识的正确理解或深刻理解后的灵感得到的。没有对基础知识的理解、记忆,不会作出一个正确的反应,更不会对某一类知识和题型产生长久的正效应。所以教师立足与最基本的东西讲深讲透,在学生心目中留下深刻的影响是很重要的。

3.重视课本例题、习题,发挥例题、习题功能

例题是解题最规范的解答过程,它和习题一起控制了教材的深度和知识辐射范围,课本例题既是如何运用知识解题的精典,也是思维训练的典范。正是这些典范的作用,学生才初步学会了怎样进行数学思维,怎样运用数学知识进行思考、解题,如何表述自己的解题过程。例题的教学是整个教学活动的重要部分,在教学过程中有画龙点睛的作用。因此,处理好例题是落实知识到位的关键一步。根据新教材的要求,我对例题的处理采取一看、二议、三评、四挖的教法。如课本例题:说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图(1)y=2x+1,(2)y=2x-2。在引导学生看、议、评后,可作如下的探索:由题不难发现函数f(x)=2x的图象向左(右)平移一(两)个单位长度即得到函数f(x)=2x+1[f(x)=2x-2]的图象,则由函数y=f(x)的图象经怎样的平移可得到y=f(x+a)(a≠0)的图象呢?作这样的处理可使学生掌握函数图象平移的一般规律。

二、教学要从学生实际出发,教学要符合教育学心理学发展

认知发展,要经历多种水平,多种阶段。教师的教学要设计有直观性、启发性、使学生可接受性。

(1)直观性:虽然中学生的认知发展水平已由具体运算进入了抽象运算阶段,但是即使他们在整体上认知水平已经达到了抽象运算的水平,在每个新数学概念的学习过程中仍然要经历从具体到抽象的转化,他们在学习新的数学概念时仍采用具体或直观的方式去探索新概念。中学课本的设置都是从特殊到一般,从特殊性到一般性,从具体到抽象,教师在备课时务必本末倒置。而需要在直观性的驾御上做些科学的合情创新。向学生提供丰富的直观背景材料。电脑等多媒体的应用为利用直观广泛性,教师应该设计合理的模型、动画,从具体到抽象,从特殊到一般为抽象思维合理铺垫。

(2)启发性:要使数学课程真正具有启发性,需要克服两种偏向:第一,内容过于简单,缺乏思考余地。没有挑战性,不能激发学生思维,甚至不能满足学生学习愿望。第二,内容过于复杂、抽象。超过了学生数学认知结构中“最近发展区”的水平,学生将会由于不能理解它,产生畏惧心理,最后厌恶学习数学。

(3)可接受性:作为数学课程内容要同学生已有的数学基础有密切联系。其抽象性与概括性不能过低或过高,要处于同级发展水平。这样才能使数学课程内容被学生理解,被他们接受,才能产生新旧知识有意义的同化作用,改造和分化出新的数学认知结构。可接受性要求教师不要在课堂太过于表现自己,不要太聪明,有时还要故意装作不懂与学生融为一体,把学生从欣赏老师转化到指导老师,或指挥老师。从而使学生从角色到主体。

三、教师的教学要多应用数学发现和解释实际问题

“应用”在数学教学中可以有许多解释,有些人为的非现实生活的例子,也可能有重要的教育价值,也可能养成学生应用数学的技能,还有多种形式体现“应用”。比如,“守门员何种站位才能缩小对手的射角?”、“攻球员应当把球带到离球门多远处,他的射球位置能取得最大射角?”这些问题把数学与实际情境联系在一起,对有些学生有吸引力,但并不是真用数学解决问题,没有哪个球员会这样去计算他们站立的位置,数学的应用主要不在于这样的“应用”。更重要的是,这种“联系”不可能总是结合学生“实际的”,正如Carson说的,“现实是主体和时间的函数,对我是现实的,对别人未必是现实的;在过去是现实的,现在不一定再是现实的了。”可见要使课程有“应用”性是既复杂、又长期的问题。

在这种设计工作中,学生会看到数学如何才能够应用到真正的“现实生活”问题上去,并且可望获得进一步学习的动力,会自然地产生建立“数学模型”的机会。

猜你喜欢
可接受性图象例题
法律论证理论对提高裁判可接受性的启示——基于“昆仑燃气公司案”的分析
函数y=Asin(ωx+ϕ)的图象
由一道简单例题所引发的思考
由一道简单例题所引发的思考
注重裁判理由的可接受性——“寄血验子”案的法律解释分析
从图象中挖掘知识的联结点
“有图有真相”——谈一次函数图象的应用
一次函数图象的平移变换
向量中一道例题的推广及应用
问渠哪得清如许 为有源头活水来