【摘要】 类风湿关节炎(rheumatoid arthritis,RA)是一种多关节慢性炎症性自身免疫性疾病,其发病机制主要包括炎症反应、软骨破坏及骨侵蚀和血管生成,并与炎症因子密切相关。其中白细胞介素-8(IL-8)为炎症因子中重要一员,故本文从炎症、软骨破坏及骨侵蚀和血管生成三方面对IL-8在RA发生发展中的作用机制展开综述。本文通过阐述IL-8与RA的相关性,明确IL-8在RA发病机制中的作用,以期为今后深入研究RA提供新的参考依据。
【关键词】 类风湿关节炎 白细胞介素-8 趋化因子 炎症 骨破坏 血管翳
Research Progress on the Relationship between Interleukin-8 and Rheumatoid Arthritis/WANG Zhendong, YANG Juanjuan, LI Haolin, JIN Fangmei, CHENG Weigang, WANG Haidong. //Medical Innovation of China, 2024, 21(16): -188
[Abstract] Rheumatoid arthritis (RA) is a polyarticular chronic inflammatory autoimmune disease, and its pathogenesis mainly includes inflammatory response, cartilage destruction and bone erosion and angiogenesis, which are closely related to inflammatory factors. Studies have shown that interleukin-8 (IL-8) is an important member of inflammatory factors, so this paper reviews the mechanism of IL-8 in the occurrence and development of RA from the three aspects of inflammation, cartilage destruction and bone erosion and angiogenesis. The paper clarifies the role of interleukin-8 in the pathogenesis of RA by describing the correlation between interleukin-8 and RA, with the aim of providing a new reference basis for future in-depth research on RA.
[Key words] Rheumatoid arthritis Interleukin-8 Chemokine Inflammation Bone destruction Pannus
First-author's address: Gansu University of Chinese Medicine, Lanzhou 730000, China
doi:10.3969/j.issn.1674-4985.2024.16.041
类风湿关节炎(rheumatoid arthritis,RA)是一种多关节的慢性、炎症性自身免疫性疾病,全球发生率为1%,中国大陆地区的发生率为0.28%,女性多于男性[1]。RA的病理特点为中性粒细胞浸润、关节破坏和功能障碍。目前认为其发病机制是由自身免疫组织破坏所表现出的一系列关节炎症性病理改变[2],由于患者存在的特异性自身抗原不能被完全清除,导致患者关节一直处于慢性炎症状态,继而引发滑膜肿胀,逐渐出现疼痛和关节肿胀等症状[3]。此外慢性炎症反应还会引起被称为“血管翳”的滑膜血管扩张,其可侵入软骨-骨连结处的关节周围骨,进而导致骨侵蚀和软骨破坏[2]。因此,炎症的发生、骨侵蚀及软骨破坏和血管生成是RA的重要病理表现。
白细胞介素-8(interleukin-8,IL-8)又称为趋化因子CXCL8,属于C-X-C趋化因子大家族。最初被称为中性粒细胞激活因子(neutrophil-activating factor,NAF),是被重点关注的趋化因子之一[4-5]。IL-8和相关细胞因子在炎症刺激下被吞噬细胞和其他各种组织细胞释放,为中性粒细胞主要组织衍生的趋化剂,对炎症和免疫有重要的调节作用[6-7]。本研究讨论了IL-8的结构和功能,并总结了IL-8在RA炎症骨破坏等过程中所发挥的重要作用。
1 IL-8的结构和功能
1.1 IL-8的结构和表达
IL-8的蛋白以99个氨基酸残基组成的前体形式存在,然后在20个残基信号序列被裂解后从细胞中分泌出来。其主要形式为77个氨基酸和72个氨基酸两种形式[8]。在基因层面,人类的IL-8基因位于4q12-q21区域,全长为5 191 bp,由4个外显子和3个内含子组成,具有单一的“TATA”和“CAT”样结构,明确地对应为一个二聚体分子[9]。IL-8有两种受体,分别为CXCR1和CXCR2,在序列上具有76%相似性[4]。其中CXCR1是一种具有代表性的趋化因子受体,可控制中性粒细胞向感染组织的迁移[10],CXCR2主要表达于中性粒细胞,参与中性粒细胞趋化[11]。目前发现这两种受体对IL-8具有很高的亲和力,CXCL8/CXCR1主要以药物受体和信号转导为主,而CXCL8/CXCR2以促进炎症和血管生成为主[12]。
IL-8最显著的特征之一是其表达水平的变化。正常情况下,非诱导细胞中IL-8基因的启动子受到以下三种抑制:(1)核因子κB(nuclear factor kappa-B,NF-κB)-抑制因子(NF-κB-repressing factor,NRF)与负调控元件(negative regulatory element,NRE)结合,该负调控元件与NF-κB结合位点重叠;(2)八聚体-1(octamer-1,OCT-1)与IL-8基因启动子的互补链在CCAAT-增强子结合蛋白(CCAAT/enhancer binding protein,C/EBP)位点的相反方向结合;(3)组蛋白脱乙酰酶1(histone deacetylase 1,HDAC-1)对组蛋白的脱乙酰化[13]。在适当的刺激下,IL-8可在单核细胞、巨噬细胞和上皮细胞等多种细胞中分泌,并被多种细胞因子、低氧状态、活性氧(reactive oxygen species,ROS)、细菌颗粒和其他环境应激诱导[14]。目前IL-8表达增强的机制有以下三种:(1)IL-8基因启动子的去抑制作用;(2)NF-κB和c-Jun N端激酶(c-Jun N-terminal kinase,Jnk)途径对IL-8基因表达的反式激活;(3)p38丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)途径对IL-8基因的稳定作用[15]。
1.2 IL-8的生物学功能
IL-8是最有效的趋化剂之一,在炎症条件下可由单核细胞、淋巴细胞、粒细胞、成纤维细胞和刺激后的软骨细胞等多种细胞产生。甚至血小板也可储存IL-8,以在炎症发生时迅速释放[9]。目前研究发现,IL-8可特异性激活中性粒细胞,促进相关蛋白酶的释放[16];相比中性粒细胞,IL-8对嗜碱性粒细胞的趋化作用有限,但仍可使嗜碱性粒细胞释放全身过敏反应介质[17]。IL-8还能促进组织修复、器官移植后的血流恢复和伤口愈合[18],并通过刺激表达CXCR2的新生血管内皮细胞的迁移和增殖来促进血管生成,最后再引导血管生长以诱导血管生成[9]。而在免疫应答中,IL-8还可增强CD4+和CD8+T淋巴细胞的体外趋化性[19]。
2 IL-8在RA发病机制中的作用
早期研究人员就已发现,在体外人滑膜细胞被白细胞介素-1(interleukin-1,IL-1)刺激后会释放一种当时未知的低分子量因子,其可刺激中性粒细胞运动[20]。在之后的研究中,这种低分子量因子被证实为IL-8[21]。Brennan等[22]于1990年首次证明了RA患者滑膜液中IL-8生物活性的存在及新鲜分离的滑膜细胞中IL-8 mRNA的表达,这表明IL-8与RA的发病有密切关联。另有研究表明,RA患者滑液中IL-8水平与疾病的发展呈强正相关[23];RA患者受累关节内的IL-8浓度较未受累关节增高[24];IL-8为RA关节血管生成的一种强有力的中介[25]。总而言之,已有研究证明,IL-8在RA的发病机制中起着较为重要的作用,其具体作用如下。
2.1 促进炎症反应
RA是一种复杂的慢性、炎症性自身免疫性疾病,滑膜组织的局部免疫激活会导致局部软骨和骨骼发炎、增生和侵袭。IL-8作为诱发关节炎症的促炎细胞因子在RA炎症发展中起着重要作用。研究表明,重组草鱼IL-8(recombinant grass carp IL-8,rgcIL-8)通过MAPK/NF-κB信号通路调节促炎细胞因子的转录,并通过CXCR1增加NF-κB的活性和IL-1β的转录,表明rgcIL-8可介导炎症反应[26]。当抑制MAPK通路中TNF-α诱导的细胞外调节蛋白激酶(extracellular signal-regulated protein kinase,ERK)1/2和JNK磷酸化、肿瘤坏死因子-α(TNF-α)诱导的蛋白激酶B(protein kinase B,AKT)/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路中部分蛋白的活化,则可降低IL-8 mRNA的自发表达和转录从而缓解胶原蛋白诱发关节炎(CIA)小鼠的滑膜炎和骨破坏[27]。而MAPK、Akt和NF-κB通路均被抑制后可发现,白介素6(interleukin-6,IL-6)和IL-8的基因和蛋白表达均降低[28]。Liu等[29]在大鼠实验中还发现,微核糖核酸-21(microRNAs-21,MiR-21)的过量表达可以通过抑制IL-8的表达可下调Wnt信号,进而缓解RA的症状。还有研究表明,db/db小鼠经IL-8的拮抗剂CXCL8(3-72)K11R/G31P(G31P)治疗后,db/db小鼠的免疫细胞浸润和细胞因子释放减弱,促炎M1和抗炎M2巨噬细胞的比例提高[30],并可通过AKT1-NF-kβ和ERK1/2-AP-1途径调节炎症[31]。当激活PI3K/Akt/mTOR/IL-8信号通路可加强RA中性粒细胞浸润的作用[32],而在降低IL-8 mRNA水平后可抑制中性粒细胞的迁移,促进中性粒细胞凋亡,减少ROS产生和中性粒细胞胞外陷阱(neutrophil extracellular traps,NETs)形成,可有效地抑制了CIA小鼠的关节炎[33]。综上所述,IL-8可通过干预多通路、加强中性粒细胞迁移和浸润等多种方式干预RA炎症的进程。
2.2 促进软骨破坏和骨侵蚀
破骨细胞(osteoclasts,OC)为目前唯一已确定的骨吸收细胞,在关节破坏中起着至关重要的作用。Toll样受体(Toll-like receptors,TLR)对OC生成和成熟OC的存活具有重要的促进作用[34],而IL-8可诱导RA巨噬细胞中的TLR5的表达促进成熟OC的分化[35]。此外IL-8还可经核受体κB激活受体配体(receptor activator of nuclear factor-κB ligand,RANKL)非依赖性机制直接诱导OC分化[36],当RANKL被抑制则OC生成促进因子会从RANKL转变为IL-8[37],而IL-8又可以上调成骨细胞中的RANKL表达,通过与细胞上的CXCR1结合直接诱导破骨形成[38]。此外抗瓜氨酸蛋白抗体与OC结合、釉母细胞瘤细胞与骨髓基质细胞(bone marrow stromal cell,BMSC)之间的相互作用和IgA自身抗体诱导免疫细胞和OC均可产生IL-8[39-41],并增强OC的成熟和活化。由此可知,IL-8可通过多种途径促进OC的生成、增强OC的成熟和活化,从而加速RA疾病的进展。
2.3 促进血管生成
随着RA的进展,白细胞会过度迁移到发炎的关节中,从而需要形成新的血管来满足肥大的关节对营养和氧气的需求,进而使促血管生成因子对内源性血管抑制介质产生优势,触发血管生成新的毛细血管。这种在慢性炎症浸润中形成无数新血管的过程被称为血管生成[42],而这种新滑膜血管的生长、发育在RA的发病机制中占据重要地位。目前IL-8已被定义为促血管生成趋化因子[43]。研究证明,CXCR2可识别含有ELR基因列序和具有促炎症发生、血管生成的ELR+CXC类趋化因子,在与IL-8结合后,可增强对血管内皮细胞的趋化性和促有丝分裂性[42]。IL-8还可直接与内皮细胞上的CXCR1和CXCR2结合触发RA血管生成,但当IL-8被中和后,血管生成活性则明显降低[44]。还有研究表明,IL-8可将促血管生成的造血细胞和免疫细胞及内皮祖细胞募集到新生血管壁龛来介导血管生成[45],再通过诱导血管内皮生长因子(vascular endothelial growth factor,VEGF)表达上调增强正反馈效应,进一步刺激IL-8的产生,加强血管生成[46]。Koch等[47]的研究也证明,与正常滑膜组织匀浆相比,RA匀浆可产生更多的IL-8,并在体内可对促进大鼠角膜产生血管生成酶,在体外则对内皮细胞产生显著的趋化活性,进而加速新血管生成。综上所述,IL-8可通过与自身受体的多种结合方式,对多种细胞产生影响,从而加速RA新血管的生成。
3 小结
RA发病机制一直是研究的重点和难点,IL-8作为促炎因子参与RA炎症发生,作为促血管趋化因子参与血管生成并以直接和间接的方式生成OC,加速RA的发展,在RA发病过程中扮演着重要的角色,但是IL-8参与炎症,血管翳形成的具体机制仍然尚不明确,有待于进一步深入研究。目前研究已经证实,小核RNA(small nuclearRNA,snRNA),微RNA(microRNAs,miRNA)[48],长链非编码RNA(long noncoding RNA,lncRNA)[49],线粒体自噬等在RA的炎症发生、骨破坏和血管生成发挥着重要作用[50],但是IL-8是否通过snRNA、miRNA、lncRNA及线粒体自噬等参与RA炎症,骨破坏,血管生成等病理过程,目前尚未明确。因此,今后可以IL-8通过snRNA、miRNA、lncRNA及线粒体自噬等参与RA炎症、骨破坏和血管生成等病理过程为切入点,深入研究IL-8在RA发生、发展的作用,明确IL-8在RA的发病机制中的重要地位,为深入探讨RA的发病机制提供参考。
参考文献
[1] RADU A F,BUNGAU S G.Management of rheumatoid arthritis: an overview[J].Cells,2021,10(11):2857.
[2] ALETAHA D,SMOLEN J S.Diagnosis and management of rheumatoid arthritis: a review[J].JAMA,2018,320(13):1360-1372.
[3] SMOLEN J S,BURMESTER G R,COMBE B,et al.Head-to-head comparison of certolizumab pegol versus adalimumab in rheumatoid arthritis: 2-year efficacy and safety results from the randomised EXXELERATE study[J].Lancet,2016,388(10061):2763-2774.
[4] MISHRA A,SUMAN K H,NAIR N,et al.An updated review on the role of the CXCL8-CXCR1/2 axis in the progression and metastasis of breast cancer[J].Mol Biol Rep,2021,48(9):6551-6561.
[5] CHANG T T,CHEN J W.The role of chemokines and chemokine receptors in diabetic nephropathy[J].Int J Mol Sci,2020,21(9):3172.
[6] POHL K,GRIMM X A,CACERES S M,et al.Mycobacterium abscessus clearance by neutrophils is independent of autophagy[J/OL].
Infect Immun,2020,88(8):e00024-20.https://pubmed.ncbi.nlm.nih.gov/32423916/.
[7] GURA T.Chemokines take center stage in inflammatory ills[J].Science,1996,272(5264):954-956.
[8] KANY S,VOLLRATH J T,RELJA B.Cytokines in inflammatory disease[J].Int J Mol Sci,2019,20(23):6008.
[9] MATSUSHIMA K,YANG D,OPPENHEIM J J.Interleukin-8: an evolving chemokine[J].Cytokine,2022,153:155828.
[10] KHARCHE S,JOSHI M,CHATTOPADHYAY A,et al.Conformational plasticity and dynamic interactions of the N-terminal domain of the chemokine receptor CXCR1[J/OL].PLoS Comput Biol,2021,17(5):e1008593.https://pubmed.ncbi.nlm.nih.gov/34014914/.
[11] SHI X,WAN Y,WANG N,et al.Selection of a picomolar antibody that targets CXCR2-mediated neutrophil activation and alleviates EAE symptoms[J].Nat Commun, 2021,12(1):2547.
[12] HE J,JIANG Z,LEI J,et al.Prognostic value and therapeutic perspectives of cxcr members in the glioma microenvironment[J].Front Genet,2022,13:787141.
[13] XIONG X,LIAO X,QIU S,et al.CXCL8 in tumor biology and its implications for clinical translation[J].Front Mol Biosci,2022,9:723846.
[14] RIZZO M,VARNIER L,PEZZICOLI G,et al.IL-8 and its role as a potential biomarker of resistance to anti-angiogenic agents and immune checkpoint inhibitors in metastatic renal cell carcinoma[J].Front Oncol,2022,12:990568.
[15] VACCHINI A,MORTIER A,PROOST P,et al.Differential effects of posttranslational modifications of CXCL8/interleukin-8 on CXCR1 and CXCR2 internalization and signaling properties[J].Int J Mol Sci,2018,19(12):3768.
[16] AN Z,LI J,YU J,et al.Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-κB signaling in macrophages[J].Cell Cycle,2019,18(21):2928-2938.
[17] KOPER-LENKIEWICZ O M,SUTKOWSKA K,WAWRUSIEWICZ-KURYLONEK N,et al.Proinflammatory cytokines (IL-1, -6, -8, -15, -17, -18, -23, TNF-alpha) single nucleotide polymorphisms in rheumatoid arthritis-a literature review[J].Int J Mol Sci,2022,23(4):2106.
[18] CAMBIER S,GOUWY M,PROOST P.The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention[J].Cell Mol Immunol,2023,20(3):217-251.
[19] KIMATA H,YOSHIDA A,ISHIOKA C,et al.Interleukin 8 (IL-8) selectively inhibits immunoglobulin E production induced by IL-4 in human B cells[J].J Exp Med,1992,176(4):1227-1231.
[20] WATSON M L,LEWIS G P,WESTWICK J.PMN stimulation by factors from IL-1-treated human synovial cell cultures[J].Agents Actions,1989,27(3-4):448-450.
[21] DE GENDT C M,DE CLERCK L S,BRIDTS C H,et al.
Relationship between interleukin-8 and neutrophil adhesion molecules in rheumatoid arthritis[J].Rheumatol Int,1996,16(4):169-173.
[22] BRENNAN F M,ZACHARIAE C O,CHANTRY D,et al.
Detection of interleukin 8 biological activity in synovial fluids from patients with rheumatoid arthritis and production of interleukin 8 mRNA by isolated synovial cells[J].Eur J Immunol,1990,20(9):2141-2144.
[23] GORLINO C V,DAVE M N,BLAS R,et al.Association between levels of synovial anti-citrullinated peptide antibodies and neutrophil response in patients with rheumatoid arthritis[J].Eur J Immunol,2018,48(9):1563-1572.
[24] ENDO H,AKAHOSHI T,TAKAGISHI K,et al.Elevation of interleukin-8 (IL-8) levels in joint fluids of patients with rheumatoid arthritis and the induction by IL-8 of leukocyte infiltration and synovitis in rabbit joints[J].Lymphokine Cytokine Res,1991,10(4):245-252.
[25] PAUSCH T M,AUE E,WIRSIK N M,et al.Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes[J].Sci Rep,2020,10(1):5420.
[26] ZHAO M,LIU Y,GAO Y,et al.Insights into the functional role of grass carp IL-8 in head kidney leukocytes: pro-inflammatory effects and signalling mechanisms[J].J Fish Biol,2022,100(1):192-202.
[27] CHEN X,LIN H,CHEN J,et al.Paclitaxel inhibits synoviocyte migration and inflammatory mediator production in rheumatoid arthritis[J].Front Pharmacol,2021,12:714566.
[28] YU H H,LI M,LI Y B,et al.Benzoylaconitine inhibits production of IL-6 and IL-8 via MAPK, Akt, NF-κB signaling in IL-1β-induced human synovial cells[J].Biol Pharm Bull,2020,43(2):334-339.
[29] LIU X G,ZHANG Y,JU W F,et al.MiR-21 relieves rheumatoid arthritis in rats via targeting Wnt signaling pathway[J].Eur Rev Med Pharmacol Sci,2019,23(3):96-103.
[30] CUI S,QIAO L,YU S,et al.The antagonist of CXCR1 and CXCR2 protects db/db mice from metabolic diseases through modulating inflammation[J/OL].Am J Physiol Endocrinol Metab,2019,317(6):E1205-E1217.https://pubmed.ncbi.nlm.nih.gov/31573846/.
[31] WALANA W,WANG J J,YABASIN I B,et al.IL-8 analogue CXCL8 (3-72) K11R/G31P, modulates LPS-induced inflammation via AKT1-NF-kbeta and ERK1/2-AP-1 pathways in THP-1 monocytes[J].Hum Immunol,2018,79(11):809-816.
[32] LIN J,HE Y,WANG B,et al.Blocking of YY1 reduce neutrophil infiltration by inhibiting IL-8 production via the PI3K-Akt-mTOR signaling pathway in rheumatoid arthritis[J].Clin Exp Immunol,2019,195(2):226-236.
[33] JIE S S,SUN H J,LIU J X,et al.Simiao Yong'an decoction ameliorates murine collagen-induced arthritis by modulating neutrophil activities: an in vitro and in vivo study[J].
J Ethnopharmacol,2023,305:116119.
[34] SOUZA P,LERNER U H.Finding a toll on the route: the fate of osteoclast progenitors after toll-like receptor activation[J].Front Immunol,2019,10:1663.
[35] PANAGOPOULOS P K,LAMBROU G I.Bone erosions in rheumatoid arthritis: recent developments in pathogenesis and therapeutic implications[J].J Musculoskelet Neuronal Interact,2018,18(3):304-319.
[36] DI POMPO G,ERRANI C,GILLIES R,et al.Acid-induced inflammatory cytokines in osteoblasts: a guided path to osteolysis in bone metastasis[J].Front Cell Dev Biol,2021,9:678532.
[37] MORITA T,SHIMA Y,FUJIMOTO K,et al.Anti-receptor activator of nuclear factor κB ligand antibody treatment increases osteoclastogenesis-promoting IL-8 in patients with rheumatoid arthritis[J].Int Immunol,2019,31(5):277-285.
[38] BENDRE M S,MONTAGUE D C,PEERY T,et al.
Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease[J].Bone,2003,33(1):28-37.
[39] KITAURA H,MARAHLEH A,OHORI F,et al.Osteocyte-related cytokines regulate osteoclast formation and bone resorption[J].Int J Mol Sci,2020,21(14):5169.
[40] LIU X,CHEN Z,LAN T,et al.Upregulation of interleukin-8 and activin A induces osteoclastogenesis in ameloblastoma[J]. Int J Mol Med, 2019,43(6):2329-2340.
[41] BREEDVELD A C,Van GOOL M,Van DELFT M,et al.IgA immune complexes induce osteoclast-mediated bone resorption[J].Front Immunol,2021,12:651049.
[42] SZEKANECZ Z,KOCH A E.Vascular involvement in rheumatic diseases: 'vascular rheumatology'[J].Arthritis Res Ther, 2008,10(5):224.
[43] CHENG Y, MA X L,WEI Y Q,et al.Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases[J].Biochim Biophys Acta Rev Cancer,2019,1871(2):289-312.
[44] KOCH A E,POLVERINI P J,KUNKEL S L,et al.Interleukin-8 as a macrophage-derived mediator of angiogenesis[J].Science,1992,258(5089):1798-1801.
[45] GROBLEWSKA M,MROCZKO B.Pro- and antiangiogenic factors in gliomas: implications for novel therapeutic possibilities[J].Int J Mol Sci,2021,22(11):6126.
[46] BULE P,AGUIAR S I,AIRES-DA-SILVA F,et al.Chemokine-directed tumor microenvironment modulation in cancer immunotherapy[J].Int J Mol Sci,2021,22(18):9804.
[47] KOCH A E,VOLIN M V,WOODS J M,et al.Regulation of angiogenesis by the C-X-C chemokines interleukin-8 and epithelial neutrophil activating peptide 78 in the rheumatoid joint[J].Arthritis Rheum,2001,44(1):31-40.
[48] ORMSETH M J,SOLUS J F,SHENG Q,et al.The endogenous plasma small rnaome of rheumatoid arthritis[J].ACR Open Rheumatol,2020,2(2):97-105.
[49] ASSADIASL S,RAJABINEJAD M,SOLEIMANIFAR N,et al.MicroRNAs-mediated regulation pathways in rheumatic diseases[J].Inflammopharmacology,2023,31(1):129-144.
[50] WANG S,DENG Z,MA Y,et al.The role of autophagy and mitophagy in bone metabolic disorders[J].Int J Biol Sci,2020,16(14):2675-2691.
(收稿日期:2023-10-18) (本文编辑:白雅茹)
*基金项目:国自然科学基金项目(82260880);甘肃省名中医传承工作室建设项目(国中医药规财函〔2021〕242号)
①甘肃中医药大学 甘肃 兰州 730000
②甘肃省中医院风湿骨病中心 甘肃 兰州 730050
通信作者:王海东