聚苯胺复合导电织物增强水凝胶传感器的制备与性能研究

2024-10-22 00:00夏娟朱晓阳毛迎吕汪洋李楠
丝绸 2024年10期

A study on the preparation and performance of polyaniline composite conductivefabric-enhanced hydrogel sensors

摘要:

织物基柔性传感器因其柔软轻薄、灵敏度高,在可穿戴电子材料领域受到广泛关注。文章以涤氨纶混纺织物为基底材料,采用原位聚合法制备了聚苯胺(PANI)复合导电织物,再将聚乙烯醇(PVA)和壳聚糖(CS)共混制备的水凝胶涂覆于其表面,得到PANI复合导电织物增强的水凝胶传感器(PAC传感织物),并对其进行了表征和性能测试。结果表明,13%-PAC传感织物具有优异的导电性、耐低温性、抗疲劳性和抗菌性,当应变为210.8%时,其断裂强度达到8.2 MPa,灵敏度(GF)为0.461,对人体面部微表情、膝部和肘部的活动有较好的响应能力,有望应用于人体健康监测和柔性可穿戴传感器等领域。

关键词:

柔性可穿戴传感器;原位聚合法;PANI复合导电织物;水凝胶;人体运动监测

中图分类号:

TS106.5

文献标志码:

A

文章编号: 10017003(2024)10期数0069起始页码10篇页数

DOI: 10.3969/j.issn.1001-7003.2024.10期数.008(篇序)

收稿日期:

20230404;

修回日期:

20240918

基金项目:

财政部和农业农村部“国家现代农业产业技术体系”项目(CARS-18)

作者简介:

夏娟(1996),女,硕士研究生,研究方向为智能纺织品。通信作者:李楠,讲师,linan@zstu.edu.cn。

可穿戴传感器能将外部各种刺激(如压力、温度和湿度等)以电信号形式输出[1-3],在健康监测、疾病诊断和人工智能等领域受到人们的广泛关注[4-6]。将导电聚合物引入织物中,便可得到具有人体运动监测功能的导电织物传感器[7-9]。与传统刚性传感器相比,此类传感器柔软轻薄、延展性好,灵敏度高且能够贴合人体运动,使得检测更为精确方便[10-11]。常见的导电聚合物有聚吡咯(Polypyrrole,Ppy)、聚苯胺(Polyaniline,PANI)和聚(3,4-乙撑二氧噻吩)(Poly(3,4-ethylenedioxythiophene),PEDOT),其中PANI具有稳定性好、合成工艺简单、电导率高等优点,在导电织物基柔性传感器领域中被广泛应用[12-13]。如Yu等[14]采用原位聚合法制备了PANI/CTS/Wool复合导电织物,电导率达到11 S/cm。Ma等[15]采用原位聚合法制备了PANI和纳米银涂层织物柔性传感器,该传感器灵敏度为0.04~0.10 kPa-1,在最大应变19.0%下断裂强度达到25.0 MPa,可用于人体运动监测。

用于可穿戴传感器的先进功能材料中,水凝胶因具备优异的柔韧性和可拉伸性被广泛使用[16]。但大多数水凝胶无法同时满足高机械强度和高导电性,这在一定程度上限制了其应用[17],而将水凝胶与导电织物相结合制备的柔性导电织物基传感器,可有效增强水凝胶的力学性能和灵敏度,为解决这一问题提供了新的思路[18-20]。

本文以高强度、高弹性回复能力的涤氨纶混纺织物(含92%涤纶、8%氨纶)为基底材料,采用原位聚合法制备了PANI复合导电织物,在其表面涂覆聚乙烯醇(Polyvinyl alcohol,PVA)和壳聚糖(Chitosan,CS)共混制备多功能水凝胶(PAC水凝胶),得到PANI导电织物基水凝胶。并在其两端连接含有导线的电极制备柔性传感器(PAC传感织物),进一步测试了PAC传感织物的力学性能、抗冻性、保水性、传感性能和抗菌性能,验证了织物基柔性可穿戴传感器在人体运动监测领域中的潜力。

1 实 验

1.1 材料与仪器

材料:壳聚糖(CS,≥97%)、苯胺(ANI,≥99.5%)、氯化钙(CaCl2,AR)、聚乙烯醇-1799(PVA,AR)、盐酸(HCl,AR)和过硫酸铵(APS,AR)(上海阿拉丁生化科技有限公司)。大肠杆菌(E.coli,ATCC 8739,BR)和金黄色葡萄球菌(S.aureus,ATCC 6538,BR)(上海鲁微科技有限公司)。乙二醇(EG,AR)(上海麦克林生化科技股份有限公司)。涤氨纶混纺机织物(92%涤纶和8%氨纶,平方米质量95 g/m2)(绍兴佰秀针纺织品有限公司)。

仪器:Gemini 500热场发射扫描电子显微镜(德国Zeiss公司),Instron 3367万能试验机(美国Instron公司),Keithley 2400数字源表(美国Keithley公司),KH-01步进控制器(中国安卡科技有限公司),DSC 3+差示扫描量热仪(瑞士Mettler公司),恒温磁力搅拌器(德国IKA公司),净化工作台、恒温振荡培养箱(上海博迅实业有限公司),高压灭菌锅(施都凯仪器设备有限公司)。

1.2 织物上的PANI原位聚合

所需涤氨纶混纺织物样品经去离子水(DI)水超声清洗后,经60 ℃烘干得到预处理织物,将其浸没在25 mL含有0.25 mL苯胺单体的HCl(1 mol/L)溶液中后超声15 min,以保证ANI单体被织物充分吸收。然后缓慢加入一定量的APS进行搅拌,当溶液颜色由无色变成墨绿色,以500 r/min的速度在0~5 ℃冰水浴中持续搅拌4~5 h,经DI水洗涤,晾干后得到PANI复合导电织物。

1.3 水凝胶的制备

以PVA水凝胶为柔性网络,采用简便的一锅法制备水凝胶。在25 mL DI中加入2 g CS搅拌,每10 min加入0.25 mL HCl(6 mol/L),共加入0.5 mL后继续搅拌至CS完全溶解得到CS溶液。接着称取一定量PVA和CaCl2溶解在由EG、DI和CS溶液组成的溶液中,95 ℃下恒温搅拌2 h后,静置30 min消除气泡,得到的水凝胶称为PAC水凝胶。通过控制CaCl2、EG、H2O和CS的质量及PVA的质量分数制备得到不同的PAC水凝胶,具体组成及命名如表1所示。

1.4 织物基柔性压力传感器(PAC传感织物)的制备

用玻璃载片将PAC水凝胶均匀刮涂在PANI复合导电织物上得到PAC导电织物基水凝胶。将两个接有导线的电极分别连接到尺寸为10 mm×30 mm的导电织物基水凝胶条的末端组装PAC传感织物。

1.5 测试与表征

1.5.1 形貌表征

将PAC导电织物基水凝胶剪成合适大小,用导电胶贴在载物台上,在10 kV加速电压下于场发射扫描电子显微镜上观察试样的表面形貌;同时,在150倍放大倍数下检测PAC导电织物基水凝胶的表面元素,得到X射线能谱(EDS)图。样品在测试前均需要进行冷冻干燥和表面喷金处理。

1.5.2 抗冻性测试

用DSC测试PAC导电织物基水凝胶样品在-70~25 ℃的耐低温性,保护气体为N2,N2流度为45 mL/min,降温速率为10 ℃/min。

1.5.3 机械性能测试

将预处理织物和导电织物基水凝胶裁剪为10 mm×30 mm,用Instron 3367万能试验机以50 mm/min的拉伸速率测其力学性能和耗散能。耗散能是导电织物基水凝胶在某一应变下,由循环拉伸曲线所围成的积分面积,可以评估其抗疲劳性。

1.5.4 保水性测试

将圆柱体(直径5 mm、厚20 mm)13%-PAC水凝胶样品置于恒定温度(25 ℃)和湿度(60%)下储存7 d,每隔24 h记录一次样品的质量。样品质量损失率(W)的计算公式为:

W/%=W0-WtW0×100(1)

式中:W0是PAC水凝胶的初始质量,Wt是给定储存时间的质量。

1.5.5 溶胀性测试

将13%-PAC水凝胶(半径10 mm、厚2.5 mm)冷冻干燥得到质量为M0的冻干水凝胶。将其置于100 mL不同温度的DI和不同pH值的溶液中进行溶胀实验。每隔一定时间取出样品,用滤纸吸干表面的水分并称重记为MS,之后再浸入原溶液中,反复称重,直至13%-PAC水凝胶的质量不再发生变化。水凝胶溶胀率(SR)的计算公式如下式所示:

SR/%=MS-M0M0×100(2)

1.5.6 抗菌性测试

参考GB/T 20944.3—2008《纺织品抗菌性能的评价第3部分:振荡法》,选用E.coli和S.aureus作为目标实验菌种。将所需菌液振荡培养12 h后稀释104倍,此时细菌浓度约为1×106 CFU/mL,通过平板计数法对导电织物基水凝胶的抗菌活性进行评估。样品的抑菌率(Y)如下式所示:

Y/%=N-QN×100(3)

式中:N和Q分别为对照试样和导电织物基水凝胶与实验菌种振荡接触后和培养基的菌落数。

1.5.7 传感性能测试

将PAC传感织物与数字源表的正负极连接,测试其电学性能。传感器的传感性能由应变灵敏度(GF)进行衡量。GF由下式计算得到:

GF=ΔR/R0ε(4)

式中:ΔR为电阻变化量,R0为初始电阻,ε为对应的形变。

2 结果与分析

2.1 扫描电镜测试

图1(a)(b)显示了处理前后织物表面的形貌变化,可见预处理织物表面较为光滑(图1(a)),经表面原位聚合ANI后得到PANI复合导电织物(图1(b))。从13%-PAC导电织物基水凝胶的截面(图1(c))中可以看到,水凝胶完全包覆在导电织物表面。图1(d)为PANI复合导电织物的EDS图,其表面含有S、N和Cl元素,证明PANI成功聚合在了织物上。

2.2 织物基柔性应变传感器性能分析

2.2.1 力学性能

为探究导电织物基PAC水凝胶的最佳PVA质量分数,本文通过拉伸实验测试了不同PVA质量分数的PAC导电织物水凝胶的机械性能。图2(a)为PAC导电织物基水凝胶的应力—应变曲线。而由图2(c)可以看出,随着PVA质量分数的增大,PAC导电织物基水凝胶的拉伸强度和应变分别在PVA质量分数为12%和13%时达到最大值。继续增大PVA的质量分数,导电织物基水凝胶的拉伸强度和应变均呈现下降趋势。研究认为PVA与CS分子间具有强烈的氢键作用,利于提高水凝胶的力学性能。当PVA质量分数过大,PVA过

量的氢键位点游离在聚合物网络中,无法达到更好的增强效果。综合对比,PVA质量分数为13%时,力学性能误差较小,最稳定。由此确定质量分数为13%的PVA是PAC水凝胶的最佳增强用量。除非另有说明,否则本文使用13%-PAC水凝胶制备导电织物基柔性传感器[21]。与预处理织物相比(图2(b)),织物在酸性条件下原位聚合了刚性结构的PANI,其内部链刚性和链间的强相互作用破坏了原本坚固的结构,导致导电织物的力学性能下降[22]。13%-PAC水凝胶的拉伸应力为1.8 MPa,与织物结合后可能由于水凝胶的低应力使导电织物的性能有所下降,但拉伸强仍能达到最大值8.2 MPa(图2(d)),与纯水凝胶相比提升了3.56倍,表明织物与水凝胶结合能够增强水凝胶的力学性能。

在20%~200%拉伸应变内对13%-PAC导电织物基水凝胶进行加载—卸载循环和耗散能测试,结果如图3所示,其评估了13%-PAC导电织物基水凝胶的抗疲劳性能。13%-PAC导电织物基水凝胶在100%应变内的耗散能较小,具有高抗疲劳性。随着拉伸应变的增大,织物和水凝胶中更多的网络结构遭到破坏,磁滞曲线呈现随着应变增大而逐渐增大的趋势。此外,研究表明人体活动的应变通常小于75%[23]。因此,在100%应变内13%-PAC传感织物优异的抗疲劳性有助于其在跟踪人体运动领域的应用。

2.2.2 传感性能

图3(a)为织物基水凝胶传感器的电阻图。与仅加了CaCl2或PANI作为导电材料的织物基水凝胶相比,13%-PAC导电织物基水凝胶的电阻明显下降,表明PANI和CaCl2能够有效增强织物基水凝胶的导电性[24]。在500~3 000脉冲数/s内,不同速度拉伸13%-PAC传感织物,其电阻率变化相同,如图3(b)所示。图4(c)为13%-PAC传感织物的应变—电阻率曲线。随着拉伸应变变化,13%-PAC传感织物表现出阶梯响应和稳定性。进一步地,对图4(c)进行线性拟合,得到应变与电阻率的校准曲线,如图4(d)所示。在10%~100%的应变内,13%-PAC传感织物的灵敏度为0.461,线性相关系数达到0.996 9,可见有着准确且可靠的信号输出。

2.2.3 抗冻性及保水性

图5(a)为探究有机溶剂EG的存在对导电织物基水凝胶传感器在-70~25 ℃内抗冻性能的影响。实验表明,13%-PAC导电织物基水凝胶在此范围内没有出现相变,而用DI水置换出EG后的导电织物基纯水凝胶在-11 ℃出现结晶。这是因为EG的存在与H2O形成强氢键,阻碍水分子的蒸发,使PAC导电织物基水凝胶呈现耐低温性。此外,通过称量水凝胶的质量来评估水凝胶在室温下的保水能力。图5(b)为13%-PAC导电织物基水凝胶在一定的环境中的保水率变化曲线。当储存时间为7 d时,13%-PAC导电织物基水凝胶的保水率达到68.69%,表现出优异的保水能力。同时,13%-PAC水凝胶具有优异可塑性(图5(c))、可书写性(图5(d))和可注射性(图5(e)),能被制作成各种不规则形状,模拟手指在触屏手机上进行书写。

3tQIizwvbLOTrRj3/m0GSw==

2.2.4 溶胀性

采用质量分析法将冷冻干燥后的13%-PAC导电织物基水凝胶分别置于温度为20、30、40 ℃的100 mL的DI水中,测试其溶胀行为,并得到时间—溶胀率曲线,如图6(a)所示。随着浸泡时间的增加,13%-PAC导电织物基水凝胶的吸水倍率不断上升,直达饱和状态。温度为40 ℃、时间达到180 min时,溶胀率出现下降,主要原因是温度较高,13%-PAC导电织物基水凝胶的持水性能下降而发生破碎。当温度为20 ℃和30 ℃时,13%-PAC导电织物基水凝胶溶胀率在达到溶胀平衡后较为稳定,表现出了良好的水溶胀性能。

此外,研究了13%-PAC导电织物基水凝胶在不同pH值环境下的溶胀可逆行为,如图6(b)所示。将冷冻干燥的13%-PAC导电织物基水凝胶放入pH值为10的缓冲溶液中溶胀至平衡称重,然后在pH值为4和pH值为10的缓冲液中交替浸泡1 h记录重量变化,重复12次。发现溶胀至平衡的13%-PAC导电织物基水凝胶转移至pH值为4的缓冲溶液时会发生收缩,导致溶胀率降低,1 h后将其转移回pH值为10的缓冲溶液,又会发生吸水现象导致溶胀率增大。这是因为

不同基团在不同pH值溶液中的离子化程度不同从而造成水凝胶的特性显著变化[26]。这表明在缓冲溶液pH值发生变化时,13%-PAC导电织物基水凝胶具有良好的响应性和溶胀—收缩可逆性。

2.2.5 抗菌性

在检测人体运动时,作为柔性可穿戴传感器直接附着于皮肤表面的水凝胶应具有良好的抗菌性。图7(a)(b)为13%-PAC水凝胶和13%-PAC水凝胶对E.coli和S.aureus的抗菌活性,其中Ⅰ为空白对照组、Ⅱ为13%-PA水凝胶、Ⅲ为13%-PAC水凝胶。结果显示,13%-PA水凝胶对E.coli和S.aureus的生长具有轻微的抑制效果,可能是阳离子Ca2+对细菌有微弱的抑制作用[25]。当加入CS时,13%-PAC水凝胶对E.coli和S.aureus具有很强的抗菌性能,杀菌率分别高达92.55%和99.49%(图7(c))。这是因为CS分子结构中存在带正电的氨基,易与呈负电性的菌体相吸附而致细菌死亡,从而达到抗菌效果[27]。这表明在13%-PA水凝胶中加入天然抗菌物质CS能够增强其抗菌性能。

2.3 人体运动监测

13%-PAC导电织物基水凝胶具有优异的柔性、良好的导电性和宽工作范围,可以组装成柔性传感器连接到人体皮肤上,并用于监测人体运动。图8(a)(b)中,13%-PAC传感织物可以快速准确地监测到微表情引起的细微肌肉运动,其附着在志愿者面部的额头和脸颊时,可以很容易地识别牙齿咀嚼和额头从舒展到紧凑过程中面部肌肉拉伸引起的电阻率变化。其中,两者的电信号波形存在细微差异,主要是因为咬齿的幅度和面部表情的运动无法保持一致。进一步地,将13%-PAC传感织物装配在手套上,通过监测电阻的相对变化精确地跟踪手指的弯曲程度(30°、45°、90°),如图8(c)所示。图8(d)显示了13%-PAC传感织物集成在手腕处识别和监测手腕的弯曲。此外,13%-PAC传感织物还可以监测身体其他部位的屈曲程度,如肘关节(图8(e))和膝关节(图8(f))。同时,由图8(c~f)可以看出,在循环扩展/屈曲过程中,电信号是可重复且稳定的。因此,13%-PAC传感织物可以用于人体运动的监测,具有分级响应的能力。

3 结 论

本文采用原位聚合法和一锅法制备了基于PANI复合导电织物的13%-PAC水凝胶柔性传感器。13%-PAC导电织物基水凝胶以高弹性高恢复能力的涤氨纶混纺织物为支撑材料,拉伸强度高(8.2 MPa)。在100%拉伸应变下,13%-PAC导电织物基水凝胶具有可恢复的能量耗散和高抗疲劳性。通过在PVA、EG和水分子之间形成氢键,阻碍水分子的蒸发,使水凝胶表现出优异的抗冻性和保水性,分别为-70 ℃下不发生相变,放置7 d后残留质量比达到68.69%。此外,13%-PAC传感织物表现出高灵敏度(GF=0.461)、稳定性和对不同应变的快速反应。在监测人体运动时,13%-PAC传感织物可以监测人体面部微表情和运动状态,对不同的运动幅度表现出不同的电阻率变化,实现分级响应。这种基于导电织物基水凝胶柔性传感器与电子信息相结合的技术,有望为新一代智能纺织品在医疗诊断和健康监测设备等可穿戴电子领域的研发中提供新思路。

《丝绸》官网下载

中国知网下载

参考文献:

[1]LEE G, WEI Q S, ZHU Y. Emerging wearable sensors for plant health monitoring[J]. Advanced Functional Materials, 2021, 31(52): 2106475.

[2]LI F, XUE H, LIN X Z, et al. Wearable temperature sensor with high resolution for skin temperature monitoring[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43844-43852.

[3]MIAO L M, WAN J, SONG Y, et al. Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 39219-39227.

[4]GAO F F, ZHAO X, ZHANG Z, et al. A stretching-insensitive, self-powered and wearable pressure sensor[J]. Nano Energy, 2022(91): 106695.

[5]ATES H C, NGUYEB P Q, GONZALEZMACIA L, et al. End-to-end design of wearable sensors[J]. Nature Reviews Materials, 2022, 7(11): 887-907.

[6]JIN C, BAI Z Q. MXene-based textile sensors for wearable applications[J]. ACS Sensors, 2022, 7(4): 929-950.

[7]DENG P F, LI X, WANG Y B, et al. Highly stretchable ionic and electronic conductive fabric[J]. Advanced Fiber Materials, 2023, 5(1): 198-208.

[8]王盼, 王朝晖. 纬编导电织物多重性能及其制备的研究进展[J]. 丝绸, 2022, 59(6): 50-57.

WANG P, WANG Z H. Research progress on multiple properties and preparation of weft-knitted conductive fabrics[J]. Journal of Silk, 2022, 59(6): 50-57.

[9]WANG X, YANG B, LI Q, et al. Modeling the stress and resistance relaxation of conductive composites-coated fabric strain sensors[J]. Composites Science and Technology, 2021, 204(7): 108645.

[10]沈悦, 杨芳芳, 李楠. 复合纤维膜负载碳纳米管的制备及传感性能[J]. 丝绸, 2021, 58(6): 1-8.

SHEN Y, YANG F F, LI N. Preparation and sensing properties of composite nanofiber membrane loaded with carbon nanotubes[J]. Journal of Silk, 2021, 58(6): 1-8.

[11]田明伟, 李增庆, 卢韵静, 等. 纺织基柔性力学传感器研究进展[J]. 纺织学报, 2018, 39(5): 170-176.

TIAN M W, LI Z Q, LU Y J, et al. Recent progress of textile-based flexible mechanical sensors[J]. Journal of Textile Research, 2018, 39(5): 170-176.

[12]LI G, LI C L, LI G D, et al. Development of conductive hydrogels for fabricating flexible strain sensors[J]. Small, 2022, 18(5): 2101518.

[13]LI Y Q, GONG Q, HAN L, et al. Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors[J]. Carbohydrate Polymers, 2022(298): 120060.

[14]YU J, PANG Z Y, ZHANG J, et al. Conductivity and antibacterial properties of wool fabrics finished by polyaniline/chitosan[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018(548): 117-124.

[15]MA Z H, WANG W, YU D. Assembled wearable mechanical sensor prepared based on cotton fabric[J]. Journal of Materials Science, 2020, 55(2): 796-805.

[16]WANG T, REN X Y, BAI Y, et al. Adhesive and tough hydrogels promoted by quaternary chitosan for strain sensor[J]. Carbohydrate Polymers, 2021(254): 117298.

[17]ZHANG H D, SHEN H, LAN J N, et al. Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors[J]. Carbohydrate Polymers, 2022(295): 119848.

[18]WU G Z, PANAHI S M, XIAO X L, et al. Fabrication of capacitive pressure sensor with extraordinary sensitivity and wide sensing range using PAM/BIS/GO nanocomposite hydrogel and conductive fabric[J]. Composites Part A: Applied Science and Manufacturing, 2021(145): 106373.

[19]LIU Y P, WANG L L, MI Y Y, et al. Transparent stretchable hydrogel sensors: Materials, design and applications[J]. Journal of Materials Chemistry C, 2022(10): 13351-13371.

[20]GAO Y, WEI C L, ZHAO S L, et al. Conductive double-network hydrogel for a highly conductive anti-fatigue flexible sensor[J]. Journal of Applied Polymer Science, 2023, 140(3): 53327.

[21]龚桂胜, 刘景勃, 钟玉鹏, 等. 聚乙烯醇水凝胶自修复性能[J]. 化工进展, 2016, 35(8): 2507-2512.

GONG G S, LIU J B, ZHONG Y P, et al. Self-healing properties of polyvinyl alcohol hydrogel[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2507-2512.

[22]YEON C, KIM G, LIM J W, et al. Highly conductive PEDOT: PSS treated by sodium dodecyl sulfate for stretchable fabric heaters[J]. Rsc Advances, 2017, 7(10): 5888-5897.

[23]XIA S ZHAGN Q, SONG S X, et al. Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors[J]. Chemistry of Materials, 2019, 33(22): 9522-9531.

[24]QI J B, WANG A C, YANG W F, et al. Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator[J]. Nano Energy, 2020, 67: 104206.

[25]李延顺, 于跃芹. 温度和pH值对智能水凝胶溶胀行为的影响[J]. 胶体与聚合物, 2009, 27(4): 9-12.

LI Y S, YU Y Q. The effect of temperature and pH on the swelling behavior of smart hydrogels[J]. Chinese Journal of Colloid & Polymer, 2009, 27(4): 9-12.

[26]VAEAN N Y, CAYDAMLI Y. Calcium chloride treated highly elastane cotton fabrics as antibacterial, comfortable and environmentally friendly materials[J]. Fibers, 2021, 9(11): 1-15.

[27]韩永萍, 李可意, 杨宏伟, 等. 壳聚糖的抗菌机理及其化学改性研究[J]. 化学世界, 2012, 53(4): 248-252.

HAN Y P, LI K Y, YANG H W, et al. Research on antibacterial mechanism of chitosan and its chemical modification[J]. Chemical World, 2012, 53(4): 248-252.

A study on the preparation and performance of polyaniline composite conductivefabric-enhanced hydrogel sensors

ZHANG Chi, WANG Xiangrong

XIA Juana,b, ZHU Xiaoyanga,b, MAO Yingb, L Wangyanga,b, LI Nana,b

(a.College of Textile Science and Engineering; b.National Engineering Lab for Textile Fiber Materials and Processing Technology,Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract:

Wearable sensors can output various external stimuli (such as pressure, temperature, and humidity) as electrical signals, and are receiving attention in fields such as health monitoring, disease diagnosis, and artificial intelligence. Among sensor materials, hydrogels are widely used because of their excellent flexibility and stretchability. However, most hydrogels cannot meet the requirements of high mechanical strength and high electrical conductivity at the same time, which hinders their development to some extent. Textiles have good flexibility, tensile strength and tensile recovery, and are suitable substrates for the preparation of strain sensors. Compared with traditional rigid sensors, flexible conductive fabric-based sensors prepared with the combination of hydrogel and conductive fabrics are soft, thin, ductile, sensitive and able to fit the human body movement, which can effectively enhance the mechanical properties and sensitivity of the hydrogel, make the detection more accurate and convenient, and provide a new way for solving this problem. Flexible sensors prepared with fabric as a substrate require the selection of a suitable conductive material. The bond between the metal-based conductive material and the polymer fiber layer is usually poor and easily detached due to mechanical deformation. After the carbon-based conductive material is bonded to the fabric, the fabric-based strain sensors obtained have poor conductivity and cannot monitor small deformations during application due to the lack of a continuous contact conductive mechanism. Therefore, it is necessary to select a conductive material that can be firmly bonded with the fabric substrate and has excellent electrical conductivity, so as to develop a fabric-based flexible sensor with high sensitivity and large strain range. The introduction of conductive polymers into fabrics results in conductive fabric sensors with human motion monitoring functions. Common conductive polymers include polypyrrole (Ppy), polyaniline (PANI), and poly(3, 4-ethylenedioxythiophene) (PEDOT), among which PANI is widely used in the field of fabric-based flexible sensors due to its advantages of good stability, simple synthesis process, and high conductivity.

In this paper, a high-strength and high-fatigue-resistant polyester-spandex blend fabric (containing 92% polyester and 8% spandex) was used as the substrate material for the flexible sensor, and PANI was polymerized on the surface of the fabric by in-situ polymerization to prepare a PANI conductive fabric. Then the multifunctional hydrogel (PAC hydrogel) prepared by blending PVA, CaCl2 and CS solution was coated on its surface to obtain the PANI conductive fabric-enhanced multifunctional hydrogel sensor. The prepared conductive hydrogel fabrics were analyzed for scanning electron microscopy, mechanical properties, frost resistance, water retention, swelling, antimicrobial and sensing properties. The results showed that the best performance of the prepared 13%-PAC conductive hydrogel fabrics was achieved when the mass fraction of PVA was 13%, and its mechanical strength was as high as 8.2 MPa, which was about 4. 56 times of that of pure hydrogels. Under 100% tensile strain, the 13%-PAC conductive fabric-based hydrogel showed recoverable energy dissipation and high fatigue resistance. The hydrogen bond formed between PVA, EG and water molecules hindered the evaporation of water molecules, so that the hydrogel exhibited excellent frost resistance and water retention, respectively, and did not undergo a phase transition at -70 ℃, and the residual mass ratio reached 68. 69% after 7 days of placing. The 13%-PAC conductive fabric-based hydrogels showed good water swelling properties at different temperatures (20 ℃, 30 ℃ and 40 ℃) and good swelling-shrinkage reversibility at different pH (pH=4 and pH=10) buffers. The incorporation of CS gave the 13%-PAC hydrogels strong antimicrobial properties against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus), with bactericidal rates as high as 92.55% and 99.49%, respectively. In addition, the 13%-PAC sensing fabric exhibited high sensitivity (GF=0.461), stability and fast response to different strains. When monitoring human movement, the 13%-PAC sensing fabric can monitor human facial micro-expressions and movement states, showing different resistivity changes for different movement amplitudes and realizing a graded response. The technology based on the combination of conductive fabric-based hydrogel flexible sensors and electronic information is expected to provide new ideas for the development of a new generation of smart textiles in the field of wearable electronics such as medical diagnostic and health monitoring devices.

Key words:

flexible wearable sensors; in-situ polymerization; PANI composite conductive fabric; hydrogel; human movement monitoring