Prediction of breathability performance of household apparel based on GRA-GA-BP neural network
摘要:
本文构建了一种改进BP神经网络模型来预测家居服面料的透气性能,能为家居服设计提供重要的参考。首先,采用灰色关联分析法(Grey Relation Analysis,GRA),选择与透气率关联度较大的因素作为研究对象。其次,采用遗传算法(GA)优化BP神经网络的结构参数,构建基于灰色关联分析的遗传算法优化BP(GRA-GA-BP)神经网络预测模型。选取58种面料成分不同、织物组织各异的家居服面料,其中42种为模型训练样本,16种为测试样本对建立的模型进行验证。实验结果表明,透气率实测值与预测值平均相对误差为8.39%;对透气率实测值与预测值进行相关性分析,拟合优度R2为0.976。研究表明,该预测模型预测效果良好、预测精度高,在一定程度上可以精准预测家居服面料的透气率。
关键词:
织物;家居服;灰色关联分析;改进BP神经网络;透气性预测
中图分类号:
TS101.923.4
文献标志码:
A
文章编号: 10017003(2024)10期数0046起始页码07篇页数
DOI: 10.3969/j.issn.1001-7003.2024.10期数.005(篇序)
收稿日期:
20240320;
修回日期:
20240912
基金项目:
国家自然科学基金项目(52203276)
作者简介:
王彬霞(1997),女,硕士研究生,研究方向为服装舒适性研究。通信作者:王春红,教授,wangchunhong@tiangong.edu.cn。
随着人们生活水平的提高,人们对于家居服的舒适性有了更广泛的关注和更高的要求,而影响家居服面料舒适性的关键因素之一是织物的透气性[1]。当面料的两侧有压力差异时,它们的通风特性就被称为透气性[2-3]。影响面料透气率的因素有纤维间的空隙、纱线直径、织物密度、厚度、平方米质量、织物组织结构及面料组成成分等[4-5]。目前国内外对于家居服研究的论文较少,家居服的舒适性研究还比较欠缺,对于透气性的研究则更为重要。邵景峰等[6]构建了一种基于支持向量机的精纺毛织物透气性预测模型,与现有BP神经网络预测模型相比,其预测精度提高了3%;Zhu等[7]建立了几种预测透气性的分析模型,发现Hagen-Poiseuille方程比其他模型具有更好的预测性;徐瑶瑶等[8]拟合织物透气率与纱线线密度、织物经纬纱密度、孔径dp之间的函数关系建立拟合函数来预测全棉织物的透气性,所计算的实测值与预测值相关系数高。本文的研究对象属于高度非线性问题,因此对于家居服面料透气性能的预测更适合用神经网络来完成。然而,经典的BP神经网络(Back-Propagation,BP)的训练与预测性能较差,并且容易出现陷入局部最优解的情况,其他神经网络不适用于本文[9]。遗传算法(Genetic Algorithm,GA)是一种模拟自然进化过程以寻找最优解的方法,适用于解决复杂的组合优化问题,因为它能迅速提供较好的优化结果[10-11]。利用遗传算法改进BP神经网络不仅能有效避免BP神经网络在选择过程中的随机性缺陷,还能显著加快其收敛速度,进而提升模型的预测精度和稳定性[12-13]。
综上所述,本文选取了涵盖不同面料成分、不同织物组织的共58种家居服面料,首先采用灰色关联分析,选取对家居服面料透气率较大的影响因素作为研究对象,即作为预测模型的输入层,然后构建基于灰色关联分析的遗传算法优化BP(GA-BP)神经网络预测模型,最后对构建的模型进行验证。该模型可以完成对市场上不同类型家居服面料透气性能的预测,在一定程度上节约了测试成本和时间,同时可为家居服的设计提供参考。
1 家居服面料透气率影响因素的灰色关联分析
织物透气性与织物的经纬纱密度、经纬纱表观直径、织物厚度、单位体积质量纤维性质、纱线结构和织物组织结构等因素有关[4-5]。但各影响因素对家居服面料透气率并未产生规律性的线性影响,因此,可以将其看作灰色系统,而灰色关联分析可对此类非确定性的动态过程发展态势进行量化分析,进而得到各影响因素对家居服面料的透气率的主次关系,找到主要影响因素[14]。
灰色关联分析是一种衡量两个因素关联程度的方法,该方法基于因素之间发展趋势的相似性或相异性。若两个因素在系统的发展过程中相对变化大体相同,则它们之间的关联度大;相反,关联度就相对较小[15-16]。利用灰色关联分析法,对家居服透气率各影响因素与透气率的关联度进行计算和分析。
1.1 归一化处理
首先确定系统因变量数列(透气率Y)和自变量数列(影响透气率的各因素),组成原始数据矩阵。因为各因素的数据之间存在较大差异,为了增加数据的可比性,对数据进行标准化处理,从而得到标准化矩阵,i为指标数量,k为样本数量。
wki=xki-minixkimaxixki-minixki(1)
式中:maxixki与minixki分别为第i个指标的最大值、最小值。
1.2 关联系数计算
对因变量数列和自变量数列的关联系数ξi(k)进行计算,ξi(k)代表自变量数列与因变量数列在各个时间点的关联程度值,其值越大,表示该因素在相应时间点的影响力越显著。对于一个因变量数列x0(k)(透气率),有5个自变量x1(k)(经/横密),x2(k)(纬/纵密),x3(k)(纱线直径),x4(k)(厚度),x5(k)(平方米质量),其中k=1,2,…,5。各个自变量与因变量的关联系数ξi(k)计算如下:
ξi(k)=mini(Δi(min))+ζmaxi(Δi(max))|x0(k)-xi(k)|+ζmaxi(Δi(max))(2)
式中:ζ为分辨系数,ζ∈[0,1],一般取ζ=0.5;mini(Δi(min))与maxi(Δi(max))分别是两级最小差、最大差。
mini(Δi(min))=minimink|x0(k)-xi(k)|(3)
maxi(Δi(max))=maximaxk|x0(k)-xi(k)|(4)
1.3 关联度计算
用平均值关联度ri来表示自变量数列与因变量数列之间的关联程度,ri越大,因素的影响力就越大[17]。
ri=1N∑Nk=1ζi(k)(5)
按照上述灰色关联分析方法,确定各影响因素对家居服面料透气率的关联度ri。
1.4 灰色关联分析结果
透气率各影响因素与家居服面料透气率关联度的计算结果表明,经/横密、纬/纵密、纱线直径、厚度、平方米质量共5个影响因素对透气率的关联度分别为0.76、0.70、0.68、0.73、0.62,与透气率的关联度都较高。因此,本文选择这5个影响因素作为GA-BP神经网络的输入参数,对测试样本的透气率进行预测。
2 实 验
2.1 材 料
选取不同组织结构、不同面料成分的家居服织物共58种(深圳全棉时代科技有限公司)。1#~18#试样为100%棉机织平纹织物,19#~22#试样为100%棉机织缎纹,23#~29#试样为100%棉针织罗纹,30#~31#试样为100%棉纬平针,32#~35#试样为100%棉机织平纹,36#试样为100%棉机织斜纹,37#试样为100%棉纬平针,38#~42#试样为95%棉5%氨纶衬纬组织,43#~46#试样为95%棉5%氨纶纬平针,47#试样为95%棉5%氨纶毛圈组织,48#试样为44%棉49%莫代尔7%氨纶纬平针,49#试样为4%棉49%莫代尔7%氨纶纬平针,50#试样为95%聚酯纤维5%氨纶机织缎纹,51#试样为92%黏胶8%氨纶罗纹,52#试样为100%聚酯纤维机织缎纹,53#~54#试样为96%聚酯纤维4%氨纶机织缎纹,55#试样为91%聚酯纤维9%氨纶机织缎纹,56#试样为46%棉54%莫代尔机织缎纹,57#试样为31%棉37%莫代尔32%聚酯纤维针织芝麻点提花,58#试样为36%棉38%莫代尔26%聚酯纤维针织芝麻点提花织物。其中1#~42#为训练集样本(表1),43#~58#为测试集样本。
2.2 方 法
2.2.1 织物密度测试
机织物:根据标准GB/T 4668—1995《机织物密度的测定》,将机织物平整地铺在工作台上,并运用织物密度镜来测量。具体操作为:在机织物上选取10 cm的长度,然后计算这一长度内经向的纬纱根数和纬向的经纱根数[18]。
针织物:按照标准ASTM D 3887《针织物密度》,计算针织物横纵向(横向)10 cm长度内的线圈数[19]。
2.2.2 纱线直径测试
使用YG002型纤维细度综合分析仪(温州市大荣纺织仪器有限公司)来测量织物中纱线的表观直径,同一样品分别取经/纵向和纬/横向的纱线进行测试[20]。
2.2.3 织物厚度测试
使用YG(B)141D数字式织物厚度仪(温州市大荣纺织仪器有限公司),根据GB/T 3820—1997《纺织品和纺织制品厚度的测定》标准,将压脚面积设定为2 000 mm2,施加200 cN的砝码质量,加压压力为1 kPa,加压时间为10 s。对同一样品进行10次测试,并计算平均值[21]。
2.2.4 织物平方米质量测试
根据GB/T 4669—2008《纺织品机织物单位长度质量和单位面积质量的测定》标准,对织物进行了平方米质量测量。选取不同位置裁剪10 cm×10 cm的试样重复测量5次,以平均值作为最终结果[22]。
2.2.5 织物透气率测试
根据GB/T 5453—1997《纺织品织物透气性的测定》的标准要求,使用YG(B)461D-Ⅱ型数字式织物透气量仪(深圳市方源仪器有限公司),在预设的压差条件下,测量规定时间内试样上垂直通过特定面积的气流流量。每种样品进行10次测试,取平均值。实验时,所选用的试样面积为20 cm2,实验压差设定为100 Pa,并选用合适的喷嘴进行测定[23]。
3 家居服面料透气性预测模型建立
3.1 预测模型原理及过程
BP神经网络因其强大的学习能力和预测功能,以及较小的计算量和简单的结构而受到关注[24-27]。然而,BP神经网络也存在一些缺点,如学习速度慢和容易陷入局部最小值,导致结果可能不是最优解。与此同时,遗传算法在解决复杂的组合优化问题时表现出色,能够迅速获得优质的优化结果[12]。因此,通
过结合遗传算法,可以有效地解决BP神经网络在选择上的随机性缺陷,加快其收敛速度,并提升模型的预测精度和稳定性。基于此,本文采用GA对BP神经网络的初始权值和阈值分布进行优化,然后将优化后的神经网络用于家居服面料透气率预测[28]。
GA优化BP神经网络的过程主要为:BP神经网络先初始化权值和阈值,然后对权值和阈值进行编码。个体的适应度函数用BP神经网络预测误差绝对值之和表示,如下式所示,适应度函数值越小,则表示训练越准确,模型的预测精度更好[28]。
Fi=(∑n1abs(yi-oi))(6)
式中:yi、oi分别为第i个节点的期望输出和预测输出。
3.2 模型参数确定
根据上述家居服面料透气率影响因素的灰色关联分析结果,选取筛选出的5个因素作为神经网络的输入变量,家居服面料实测透气率为输出变量。即输入层神经元个数为6,输出层神经元个数为1,根据经验公式和Kolmogorov定理[29],隐藏层神经元个数取值范围为4~21,经反复测试,确定隐含层节点数为6。遗传算法参数设置如下:种群规模N=10,交叉概率Pc=0.4,变异概率Pm=0.05,最大迭代次数为20,选择方式采用轮盘赌法[30]。
4 模型验证
重新选取16种面料成分不同、织物组织各异的家居服面料,利用Matlab软件的神经网络工具箱实现GA-BP的优化和构建,进而完成了家居服面料透气性能的预测,预测结果如表2所示。透气率实测值与预测值相对误差在0.80%~28.53%,平均相对误差为8.39%,可知预测误差很小,预测精度良好。
将透气率实测值与预测值进行对比,发现实测值与预测值曲线基本一致,如图1所示,再一次验证GA改进BP神经网络模型的预测精度良好。
在OriginPro软件中,将透气率实测值与预测值进行拟合,拟合优度R2为0.976,拟合效果很好,再次验证该预测模型预测的透气率与实测值极强相关,如图2所示。
5 结 论
为了能实现基于织物结构参数的织物透气性能预测,本文采用灰色关联分析筛选了5种关联度较高的织物结构参数:经/横密、纬/纵密、纱线直径、厚度、平方米质量。以该5个影响因素作为BP神经网络的输入参数,用遗传算法优化BP神经网络的结构,从而实现了织物透气性的预测。结果显示:透气率实测值与预测值的平均相对误差为8.39%,透气率实测值与预测值线性拟合度R2为0.976。该结果证明了本文提出的织物透气性预测方法具有很高的可行性,可以为家居服的设计提供重要的参考依据。
《丝绸》官网下载
中国知网下载
参考文献:
[1]沈妙音. 抗菌热湿舒适性服用机织物的研究与开发[D]. 杭州: 浙江理工大学, 2021.
SHEN M Y. Research and Development of Antibacterial Thermo-wet Comfort Woven Fabric[D]. Hangzhou: Zhejiang Sci-Tech University, 2021.
[2]杨鑫, 陈慧敏, 柯达, 等. 基于ALE方法研究面料透气性对非接触吸附效果的影响[J]. 东华大学学报(自然科学版), 2023, 49(6): 104-110.
YANG X, CHEN H M, KE D, et al. Effect of fabric permeability on non-contact adsorption based on ALE method[J]. Journal of Donghua University (Natural Science), 2023, 49 (6): 104-110.
[3]张凤彩, 程小明, 吕治家, 等. 面料吸湿速干性能的影响因素研究[J/OL]. 棉纺织技术, 2024: 61.1132.TS.20231013.1704.002.html.
ZHANG F C, CHENG X M, L Z J, et al. The influence factors of fabric moisture quick-drying properties research[J/OL]. Cotton Textile Technology, 2024: 61.1132.TS.20231013.1704.002.html.
[4]余佳文. 运动型羊毛/涤纶针织物热湿舒适性研究与综合评价[D]. 上海: 东华大学, 2023.
YU J W. Research and Comprehensive Evaluation on Thermal and Wet Comfort of Sports Wool/Polyester Knitted Fabric[D]. Shanghai: Donghua University, 2023.
[5]SANCHEZ-BOTERO L, AGRAWALA A, KRAMER-BOTTIGLIO R. Stretchable, breathable, and washable fabric sensor for human motion monitoring[J]. Advanced Materials Technologies, 2023, 8(17): 2300378.
[6]邵景峰, 王希尧. 基于支持向量机的精纺毛织物透气性预测[J]. 毛纺科技, 2019, 47(8): 66-72.
SHAO J F, WANG X Y. Prediction of breathability of worsted fabrics based on support vector machines[J]. Woolen Textile Technology, 2019, 47(8): 66-72.
[7]ZHU G, FANG Y, et al. Prediction of structural parameters and air permeability of cotton woven fabric[J]. Textile Research Journal, 2018, 88(14): 1650-1659.
[8]徐瑶瑶, 朱俐莎, 杜磊, 等. 棉织物透气性能的预测研究[J]. 现代纺织技术, 2015, 23(3): 26-30.
XU Y Y, ZHU L S, DU L, et al. Prediction of breathability of cotton fabrics[J]. Advanced Textile Technology, 2015, 23(3): 26-30.
[9]马海志. BP神经网络的改进研究及应用[D]. 哈尔滨: 东北农业大学, 2016.
MA H Z. Improvement Research and Application of BP Neural Network[D]. Harbin: Northeast Agricultural University, 2016.
[10]AIVALIOTIS-APOSTOLOPOULOS P, LOUKIDIS D. Swarming genetic algorithm: A nested fully coupled hybrid of genetic algorithm and particle swarm optimization[J]. PLoS One, 2022, 17(9): 0275094.
[11]NISHIDA K. Kernel density estimation by genetic algorithm[J]. Journal of Statistical Computation and Simulation, 2023, 93(8): 1263-1281.
[12]XU F, MO L, CHEN H, et al. Genetic algorithm to optimize the design of high temperature protective clothing based on BP neural network[J]. Frontiers in Physics, 2021, 9: 600564.
[13]石明, 汪舟, 甘进, 等. 基于GA-BP神经网络的喷丸样品表层硬度预测模型[J]. 表面技术, 2022, 51(1): 332-338.
SHI M, WANG Z, GAN J, et al. Microhardness prediction model of peened parts based on GA-BP neural network[J]. Surface Technology, 2022, 51(1): 332-338.
[14]ADAMU M A, SUMAILA M, DAUDA M, et al. Production and optimization of novel rice husk ash reinforced polycaprolactone/hydroxyapatite composite for bone regeneration using grey relational analysis[J]. Scientific African, 2023, 19: e01563.
[15]蒋荣超, 慈树坤, 刘大维, 等. 基于灰色关联分析的碳纤维增强树脂复合材料控制臂铺层优化[J]. 复合材料学报, 2022, 39(1): 390-398.
JANG R C, CI S K, LIU D W, et al. Ply optimization of carbon fiber reinforced plastic control arm based on grey relational analysis[J]. Journal of Composite Materials, 2022, 39(1): 390-398.
[16]LIU S, ZHANG H, YANG Y. Explanation of terms of grey incidence analysis models[J]. Grey Systems: Theory and Application, 2017, 7(1): 136-142.
[17]水若倩. 基于灰色关联分析法的美的集团资产质量研究[D]. 兰州: 兰州财经大学, 2022.
SHUI R Q. Research on Asset Quality of Midea Group Based on Grey Correlation Analysis[D]. Lanzhou: Lanzhou University of Finance and Economics, 2022.
[18]闫畅, 裴燕华. 一种高密度织物的织物密度测试方法研究[J]. 合成纤维, 2024, 53(1): 58-60.
YAN C, PEI Y H. Study on a fabric density testing method for high density fabrics[J]. Synthetic Fiber in China, 2019, 53(1): 58-60.
[19]丁雪婷, 王建萍, 潘婷, 等. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(9): 75-83.
DING X T, WANG J P, PAN T, et al. Development and performance of dragonfly wing structure like winter knitted fabrics[J]. Acta Textistrica Sinica, 2023, 44(9): 75-83.
[20]黄伟. 不同成纱结构长丝纱的强力预测模型研究[D]. 上海: 东华大学, 2017.
HUANG W. Research on Strength Prediction Model of Filament Yarn with Different Yarn Structure[D]. Shanghai: Donghua University, 2017.
[21]廖世豪, 张馨雨, 田飞, 等. 聚乳酸/聚酮共混织物的开发与设计[J]. 合成纤维, 2024, 53(2): 37-39.
LIAO S H, ZHANG X Y, TIAN F, et al. Development and design of polylactic acid/polyketone blend fabric[J]. Synthetic Fiber in China, 2024, 53(2): 37-39.
[22]聂梓言. 纯氧化铝长丝机织物开发工艺研究[D]. 上海: 东华大学, 2024.
NIE Z Y. Research on the Development Process of Pure Alumina Filament Woven Fabric[D]. Shanghai: Donghua University, 2024.
[23]史洋涛. 基于石墨烯纤维交织物的性能研究与产品开发[D]. 杭州: 浙江理工大学, 2023.
SHI Y T. Performance Research and Product Development of Graphene Fiber Interleaved Materials[D]. Hangzhou: Zhejiang Sci-Tech University, 2023.
[24]LIU X, LI Z. Influence mechanism of running sportswear fatigue based on BP neural network[J]. EURASIP Journal on Advances in Signal Processing, 2021(1): 1-15.
[25]王彦鑫, 李海岩, 崔世海, 等. 基于BP神经网络的儿童乘员头部损伤预测模型及评估参数研究[J]. 汽车工程, 2024, 46(2): 329-336.
WANG Y X, LI H Y, CUI S H, et al. Research on prediction model and evaluation parameters of child occupant head injury based on BP neural network[J]. Automotive Engineering, 2024, 46(2): 329-336.
[26]史墨可, 路妍, 颉潭成, 等. 基于GA-BP神经网络的宽带激光熔覆裂纹缺陷预测[J/OL]. 热加工工艺, 2024: 10.14158/j.cnki.1001-3814.20223162.
SHI M K, LU Y, XIE T C, et al. Prediction of crack defects in broadband laser cladding based on GA-BP neural network[J/OL]. Hot Working Technology, 2024: 10.14158/j.cnki.1001-3814.20223162.
[27]吕哲, 贺利乐, 林育阳, 等. 基于铝合金粉末成形本构模型的BP神经网络参数预测[J]. 热加工工艺, 2022, 51(4): 46-50.
L Z, HE L L, LIN Y Y, et al. BP neural network parameter prediction based on constitutive model of aluminum alloy powder forming[J]. Hot Working Technology, 2022, 51(4): 46-50.
[28]程晓娟, 韩庆兰, 全春光. 基于灰关联分析的GA-BP神经网络在汽车油耗估算中的应用[J]. 数学的实践与认识, 2016, 46(8): 43-51.
CHENG X J, HAN Q L, QUAN C G. Vehicle fuel consumption forecast models of optimized BP neural network based on grey relation and genetic algorithm[J]. Mathematics in Practice and Theory, 2016, 46(8): 43-51.
[29]PAMUJI S. 服务质量管理与收入和生活质量之间的相关性: 以印度尼西亚语言村为例[D]. 武汉: 华中师范大学, 2020.
PAMUJI S. Correlation Between Service Quality Management with Income and Quality of Life: The Case of Kampung Bahasa, Indonesia[D]. Wuhan: Central China Normal University, 2020.
[30]LU X, WANG Y, LI J, et al. Three-dimensional coordinate measurement algorithm by optimizing BP neural network based on GA[J]. Engineering Computations, 2019, 36(6): 2066-2083.
Prediction of breathability performance of household apparel based on GRA-GA-BP neural network
ZHANG Chi, WANG Xiangrong
WANG Binxia1a,b,c, WANG Chunhong1a,b,c, CHEN Yasong1d, ZHOU Jinxiang2, YIN Lanjun2, YANG Daopeng3
(1a.School of Textile Science and Engineering; 1b.Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials;1c.Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes; 1d.School of Mathematical Sciences,Tiangong University, Tianjin 300387, China; 2.Shenzhen Purcotton Co., Ltd., Shenzhen 518109, China;3.Shaoxing Zhongfanglian Inspection Technology Service Co., Ltd., Shaoxing 312000, China)
Abstract:
With the improvement of people’s living standards, people have higher requirements for the comfort of household apparel. Breathability is one of the key factors affecting the comfort of household apparel and is the most concerned by household apparel consumers. At present, research on the comfort of household apparel is still in a blank period both domestically and internationally. There is a lack of research on the breathability of various household apparel fabrics with different fabric compositions and textures, and there is relatively little research on predicting the comfort of household apparel. Based on this, this article selects 58 common household apparel fabrics with different fabric compositions and textures on the market, and constructs a genetic algorithm improved BP neural network model to predict the breathability performance of household apparel.
Firstly, to study the relationship between various influencing factors and air permeability of household apparel fabrics, the grey relational analysis (GRA) method was used to analyze the degree of influence of each influencing factor on the air permeability of household apparel fabrics. The factors with higher correlation were selected as input parameters for tc6713016caef53ec049a39674ec76f56e8164257f87ef9580de0076513520a67he model in this study, namely density, yarn diameter, thickness, and weight. Secondly, due to the shortcomings of BP neural network, such as proneness to local minima, slow learning rate, and long training time, this study used genetic algorithm (GA) to optimize the structural parameters of BP neural network, and constructed a genetic algorithm optimized BP (GRA-GA-BP) neural network prediction model based on grey correlation analysis. Genetic algorithm can optimize the structural parameters of the model, find the best parameter combination, and solve complex and high-dimensional problems, without being affected by local optimal solutions. 58 household apparel fabrics with different fabric compositions and textures were selected, of which 42 were model training samples and 16 were test samples to validate the established model. The parameters of each factor, including fabric density, yarn diameter, thickness, weight, and air permeability, were tested as input parameters for the GRA-GA-BP neural network.
The results show that the measured and predicted values of air permeability had a small error, with a relative error of between 0.80% and 28.53%, and an average relative error of 8.39%; a comparison chart between the measured and predicted values of air permeability was drawn, and it was found that the two curves are basically consistent, indicating high prediction accuracy of the model. Finally, OriginPro software was used to analyze the correlation between the measured and predicted values of air permeability, and the goodness of fit R2 was 0.976, very close to 1, indicating that the model’s prediction effect is good. The prediction model has a small prediction error, good prediction effect, high prediction accuracy, good fitting effect between the measured and predicted values of air permeability, and a strong correlation between the measured and predicted values.
This article enriches the research on predicting the comfort of household apparel. The model can accurately predict the breathability of household apparel fabrics to a certain extent, saving manpower and costs required for experiments. It has important reference significance for household apparel designers to design based on household apparel comfort performance. At the same time, it provides a reference route for predicting the comfort of household apparel. Researchers can start from the perspective of household apparel comfort, combine subjective and objective experiments, and construct corresponding household apparel comfort evaluation and prediction models.
Key words:
fabric; household apparel; grey correlation analysis; improved BP neural network; breathability prediction