非Kerr光纤中亮孤子的稳定性与相互作用

2024-04-29 00:44胡唯伊王运涛徐友才张世全
关键词:薛定谔孤子边值问题

胡唯伊 王运涛 徐友才 张世全

非Kerr光纤中的亮孤子的演化可以用具有三次-五次竞争非线性项的非线性薛定谔方程来描述. 为数值求解该方程的初值问题,本文将无界区域截断为有界区域,根据亮孤子在远场的渐近行为构造了合理的边界条件,从而将该初值问题转换为初边值问题. 对这个初边值问题,本文分别提出了Crank-Nicolson有限差分(Crank-Nicolson Finite Difference, CNFD)格式和时间分裂有限差分(Time-Splitting Finite Difference, TSFD)格式. 这两种格式在空间和时间维度上都具有二阶精度,其中CNFD格式是全隐格式,可以守恒离散能量和质量,TSFD是线性隐式格式,可以守恒离散质量. 在以数值算例验证两种方法的计算效率后,本文用TSFD格式研究了非Kerr光纤中亮孤子的稳定性与相互作用.

亮孤子; 薛定谔方程; 三次-五次非线性; 非Kerr光纤

O241.82 A 2024.011001

Stability and interaction of bright solitons in non-Kerr fiber

HU Wei-Yi  1 , WANG Yun-Tao  2 , XU You-Cai  1,2 , ZHANG Shi-Quan  1

(1. School of Mathematics, Sichuan University, Chengdu 610064, China;

2. Tianfu Engineering-Oriented Numerical Simulation & Software Innovation Center, Chengdu 610207, China)

Dynamical behaviors of bright solitons can be described by the nonlinear Schrdinger equation (NLSE) with cubic-quintic competing nonlinear terms. In this paper, to numerically solve the initial value problem of the NLSE, two difference schemes are proposed. Firstly, we transfer the initial value problem into the initial value problem with boundary conditions, truncate the unbounded region into a bounded region and constructe a reasonable boundary condition based on the asymptotic behaviors of bright solitons in the far field. Then we design the Crank-Nicolson finite difference (CNFD) and time-splitting finite difference (TSFD). The CNFD scheme is fully implicit and can conserve discrete energy and mass. Meanwhile, the TSFD scheme is linear implicit and can only conserve discrete mass. Finally, after the performance of the two schemes is compared by some examples, we explore the stability and interaction of bright solitons by using the TSFD scheme.

Bright soliton; Schrodinger equation; Cubic-quintic nonlinearity; Non-Kerr fiber

(2010 MSC 65M60)

5 结 论

本文对具有三次-五次非线性项的非线性薛定谔方程初边值问题提出了两种差分格式,并对比了它们的计算效率. CNFD格式在时间和空间方向都具有二阶精度.因其是全隐格式,计算过程更耗时,计算量更大. TSFD格式在时间和空间方向也都具有二阶精度.对于固定的网格尺寸 h ,时间步长 τ 取不同值时TSFD格式的离散误差小于CNFD格式,因而TSFD格式在时间维度上具有更高精度. 同时,因TSFD格式是线性隐式格式,计算效率较高,计算时间明显低于CNFD格式,因而计算效率更好. 另一方面,CNFD格式可以守恒离散能量和质量而 TSFD格式只守恒离散质量,所以在守恒性上CNFD格式更好.

然后,我们利用TSFD格式研究了非克尔光纤中亮孤子的稳定性与相互作用.结果表明:首先,亮孤子的演化是动态稳定的;其次,两个亮孤子在碰撞后可以完全分离,分离后仍保持匀速运动,密度分布均匀,且亮孤子的速度越快则碰撞后产生的振荡越强烈.

参考文献:

[1]   Pelinovsky  D, Kivshar Y, Afanasjev V. Instability-induced dynamics of dark solitons [J]. Phys Rev, 1996, 54: 2015.

[2]  Khater A, Callebaut D, Seadawy A. General soliton solutions of an  N -dimensional complex Ginzburg-Landau equation [J]. Phys Scr, 2000, 62: 353.

[3]  Khater A, Seadawy A, Helal M. General soliton solutions of an  N -dimensional nonlinear Schrodinger equation [J]. Nuov Ciment B, 2000, 115: 1303.

[4]  Khater A, Callebaut D, Helal M,  et al . Variational method for the nonlinear dynamics of an elliptic magnetic stagnation line [J]. J Phys B, 2006, 39: 237.

[5]  Seadawy  A, Sayed A. Soliton solutions of cubic-quintic nonlinear Schrodinger and variant Boussinesq equations by the first integral method [J]. Filomat, 2017, 31: 4199.

[6]  Kim W, Moon H. Dark and bright soliton exchange in a nonlinear dispersive medium [J]. J Korean Phys Soc, 2001, 38: 558.

[7]  Youssoufa  M, Dafounansou O, Mohamadou A. Bright, dark and kink solitary waves in a cubic-quintic-septic-nonical medium, nonlinear optics—from solitons to similaritons [M]. Britain: Intech Open, 2020.

[8]  Kudryashov N. Traveling wave solutions of the generalized nonlinear Schrodinger equation with cubic-quintic nonlinearity [J]. Optik, 2019, 188: 27.

[9]  Serkin V, Belyaeva T, Alexandrov I, et al . Optical pulse and beam propagation (Ⅲ) [J]. SPIE Proc, 2001, 4271: 292.

[10]  Antoine  X, Bao W Z, Besse C. Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J]. Comput Phys Commun, 2013, 184: 2621.

[11] Shen J, Tang T, Wang L. Spectral methods: algorithms, analysis and applications [M]. Berlin: Springer, 2011.

[12] Seshu P. Textbook of finite element analysis [M]. New Deli: PHI Learning Private Ltd, 2012.

[13]  Li X. Luo J F. Feng M F. A nonllnear 1ocal projection-based finite element method for unsteady Navier-Stokes equations [J]. J Sichuan Univ(Nat Sci Ed), 2021. 58: 031002.[李西, 罗加福, 冯民富. 非定常Navier-Stokes方程的一种非线性局部投影稳定化有限元方法[J]. 四川大学学报(自然科学版), 2021, 58: 031002.]

[14] Delfour M, Fortin M, Payr G. Finite-difference solutions of a non-linear Schrodinger equation [J]. J Comput Phys, 1981, 44:277.

[15] Akrivis G. Finite difference discretization of the cubic Schrodinger equation [J]. IMA J Numer Anal, 1993, 13: 115.

[16] Akrivis G, Dougalis V A, Karakashian O. Solving the systems of equations arising in the discretization ofsome nonlinear PDEs by implicit Runge-Kutta methods [J]. ESAIM Math Model Num, 1997, 31: 251.

[17] Karakashian O, Akrivis G, Dougalis V. On optimal order error estimates for the nonlinear Schrodinger equation [J]. SIAM J Numer Anal, 1993, 30: 377.

[18] Loscalzo F, Talbot T. Spline function approximations for solutions of ordinary differential equations [J]. SIAM J Numer Anal, 1967, 4: 433.

[19] McLachlan R, Quispel G. Splitting methods [J]. Acta Numer, 2002, 11: 341.

收稿日期:  2023-02-16

基金项目:  国家重大专项(GJXM92579); 四川省自然科学基金(2023NSFSC0075)

作者简介:   胡唯伊(1998-), 女, 硕士研究生, 主要研究方向为微分方程数值解.E-mail: huweiyi2020@163.com

通讯作者:  徐友才. E-mail: xyc@scu.edu.cn

猜你喜欢
薛定谔孤子边值问题
非线性n 阶m 点边值问题正解的存在性
拟相对论薛定谔方程基态解的存在性与爆破行为
Chern-Simons-Higgs薛定谔方程组解的存在性
带有积分边界条件的奇异摄动边值问题的渐近解
一个新的可积广义超孤子族及其自相容源、守恒律
一类相对非线性薛定谔方程解的存在性
(3+1)维Potential-Yu-Toda-Sasa-Fukuyama方程新的多周期孤子解
薛定谔的馅
两个孤子方程的高阶Painlevé截断展开
(3+1)维非线性方程的呼吸类和周期类孤子解