毕皓东 汪影 赵旭 朱博 孙昌 付一政 刘建立
Theoretical calculation of alkaline hydrolysis of heterobifunctional reactive dye-cellulose compounds
摘要:为了防护异双活性基染料由纤维素上水解脱落进而在洗涤中造成衣物褪色与串色,探究其在碱性条件下与纤维素键合共价键的水解机理具有重要意义。文章以异双活性基染料活性黄210与纤维素键合共价键水解为代表,基于单活性基染料与纤维素的脱落机理推测了活性黄210从纤维素脱落的可能途径,之后采用密度泛函理论计算了各水解途径的反应活化能,并比较了水解过程中染料纤维素聚合物部分反应位点的局部亲核性。结果表明:纤维素与染料乙烯砜基键合处先水解,均三嗪基键合处后水解。在乙烯砜基键合处的醚键先水解为乙烯基砜,与OH-的亲核反应性较大,能垒为17.1 kcalmol;之后乙烯基砜再水解为β-羟乙基砜,亲核反应性居中,能垒为27.8 kcalmol。在均三嗪基键合处的亲核反应性较小,均三嗪基水解为羟基三嗪能垒较高,为48.6 kcalmol。
关键词:活性染料;纤维素;染料水解;密度泛函理论;波函数理论;亲核反应性;反应活化能
中图分类号:TS193.1
文献标志码:A
文章编号:10017003(2024)04000909
DOI:10.3969j.issn.1001-7003.2024.04.002
收稿日期:20230707;
修回日期:20240312
基金项目:江苏省自然科学基金青年基金项目(BK20200608)
作者简介:毕皓东(2000),男,硕士研究生,研究方向为纺织可持续发展与生态环境保护。通信作者:刘建立,教授,jian-li.liu@hotmail.com。
双活性基染料由于其优异的染色牢度、较高的耐光性和丰富的色彩范围,被广泛应用于棉纤维及蛋白质纤维的染色[1]。在目前的研究中,单活性基与纤维素分子的水解断键反应机理及水解产物被人們所熟知。比如在碱性下卤代均三嗪型活性基和乙烯砜型活性基与纤维素键合物最终会被水解为羟基三嗪、β-羟乙基砜和纤维素阴离子[2-3],但对同时含有卤代均三嗪型和乙烯砜型活性基的异双活性基染料与纤维素间的断键反应过程并不明确。
量子化学计算是研究染料化学特性和光学特性极具潜力的工具[4],前线分子轨道理论(Frontier Molecular Orbital,FMO)是将波函数理论最早应用于分析分子反应性的成功例子之一[5]。概念密度泛函理论(Conceptual Density Functional Theory, CDFT)是一种从分子构型和电子密度的角度出发,基于密度泛函揭示分子化学反应性的理论[6]。FMO和CDFT是定性和定量预测分子反应性的两个代表性理论。从CDFT中得到的一些化学描述符如福井函数、化学硬(软)度、亲电(核)性等,是一类新型的专门用于描述物质化学反应性的结构指数[7]。吉布斯自由能的变化可用于推测化学反应发生的方向和预测反应的热力学性质[7-9]。Pei等[10]利用密度泛函理论(Density Functional Theory, DFT)研究了有机硅非水介质和传统水基染色体系中活性染料的水解反应能隙,阐明了染料在两种介质中的水解反应机理。张永波[11]采用DFT模拟了乙烯砜型染料在碱性下与纤维素键合反应过程中的能量变化,表明染料只需较低的能量壁垒就能完成与纤维的反应,获得了传统实验中无法获得的结果。Kausar等[12]通过DFT计算了亚甲基蓝染料和纤维素的静电势、前线分子轨道和能隙等电子特性,解释了染料吸附在纤维素黏土海藻酸钠复合材料上的相互作用机理。这些学者采用量子化学计算研究活性染料的水解及吸附性能,为探索染料与纤维素键合共价键断键水解过程提供了积极的经验借鉴。
本文首先基于单活性基染料与纤维素间共价键的水解反应机理推测了双活性基染料活性黄210(C.I. Reactive Yellow 210,RY210)与纤维素键合共价键水解的可能途径。之后结合FMO、CDFT和分子动力学模拟构建了染料纤维素聚合物模型。最后通过DFT计算了二聚体模型每一步水解反应的活化能,探究染料从纤维素上水解脱落的过程,同时在CDFT基础上讨论了聚合物分子均三嗪基水解为羟基三嗪、乙烯砜基键合处醚键水解为乙烯基砜和乙烯基砜水解为β-羟乙基砜过程中与OH-的亲核反应性大小。本研究对控制染料从纤维上水解脱落褪色与串色、设计和合成更加高效和环保的染料有一定的帮助。
1 模拟方法
1.1 模型的构建及优化
由PubChem有机小分子生物活性数据库下载RY210的分子模型数据文件,采用Matthews 等[13]构建的纤维素模型生成器直接生成纤维素模型。目前对纤维素物理及化学降解的研究表明[14-16],对于不同长度纤维素链组成的无定形模型,其物理和化学性质没有显著差异,因此为了控制构建模型的复杂度和减少计算量,以纤维素二糖代替纤维素链。采用BIOVIA Materials Studio 2019中的Forcite模块对RY210 和纤维素二糖分子进行初步优化,采用Gaussian16(Revision C.01)在B3LYP6-31G(d) 理论水平下对初步优化后的模型做进一步的结构优化和频率振动计算[17],使用“Stable”关键词检查波函数稳定性并应用D3方法描述分子间色散作用[18],使其具有稳定的热力学性质。同时对零点能进行矫正,矫正因子为0.980 6,以减少系统误差并考虑非谐波效应[19]。在M06-2X-D36-311G(d)理论水平下计算了所有水解化合物的单点能,以进一步计算反应的吉布斯自由能。所有计算均在气相下进行。波函数分析使用Multiwfn(Version 3.8(dev))软件[20],并使用VMD(Version 1.9.4a53)可视化分析结果[21]。
1.2 电子特性分析
采用静电势(Electrostatic Potential,ESP)、FMO、简缩福井函数(Condensed Fukui Function, CFF)、简缩双描述符(Condensed Dual Descriptor, CDD)和相对亲电性s+As-A、相对亲核性s-As+A,对纤维素二糖及二聚体化合物模型进行电子特性分析。简缩福井函数(CFF)是将福井函数收缩到原子上,以定量比较不同位点上福井函数的大小。采用Hirshfeld电荷计算后衡量亲电、亲核反应如下式[22] 所示:
亲电反应性: f-A=qAN-1-qAN(1)
亲核反应性: f+A=qAN-qAN+1(2)
式中:qAN为有N个电子的分子中原子A的电荷。
双描述符(CDD) 描述为福井函数对电子总数的一阶偏导数,也是密度泛函理论下预测反应位点的有效工具。其也可以采用Hirshfeld电荷计算[23],如下式所示:
f(2)A=f+A-f-A=2qAN-qAN+1-qAN-1(3)
相对亲电性s+As-A和相对亲核性s-As+A预测位点反应性比一般的反应描述符更准确,可以避免受到基组或相关效应的强烈影响。s+As-A值越大的位点更有可能被亲核试剂攻击,而s-As+A值越大的位点更有可能被亲电试剂攻击。简缩局部软度s+A和s-A定义如下式[24]所示:
s-A=s(qAN-1-qAN)(4)
s+A=s(qAN-qAN+1)(5)
式中:s为系统的全局柔软度,定义为s=1(I-A);I是垂直电离能;A是电子亲和力。
2 结果和分析
2.1 染料纤维素间共价键水解反应路径
纤维素与RY210均三嗪基和乙烯砜基形成的都是醚键,碱性环境下都会水解。在均三嗪基键合处发生的是SNAr2反应,OH-先与纤维素相连的碳原子发生亲核加成,形成带负电的中间体,其次发生消除取代反应,水解反应共2步;在乙烯砜基键合处首先是醚键发生β-消除反应,此过程是没有中间产物的SN2反应,只有一步。之后在形成的乙烯基β碳处与OH-发生亲核加成,形成中间产物,最后完全水解为β-羟乙基砜,水解反应共3步[25]。由于两种活性基团在纤维素键合处与OH-反应性不同,其水解断键也存在先后顺序。本文以RY210为例,染料纤维素化合物水解路径可能有7条,如图1所示。其中路径1、5是均三嗪基和乙烯砜基其中之一先单独完全水解,之后另一活性基再完全水解;路径2是r1乙烯砜基键合处先水解成乙烯基砜,之后均三嗪基键合处先完全水解,最后乙烯基砜完全水解为β-羟乙基砜;路径3、4、6、7则是水解过程中在两个活性基键合处未完全水解,出现复合水解状态。
2.2 染料纤维素化合物模型构建及优化
在构建染料纤维素二聚体化合物之前,首先对纤维素二糖和RY210分子单体进行优化。两个单体经过DFT方法优化后部分基团的键长、键角和二面角大小等参数如表1所示。值得注意的是,在纤维素二糖分子上,左右两个吡喃糖上的伯羟基与其相连的两个碳原子所成的二面角大小并不相同,分别为67.08°和-52.43°。存在差异的原因可能是纤维素分子左右两侧的葡萄糖单元不完全平行,葡萄糖剩基上其他羟基之间也会相互影响。已有研究表明,纤维素二糖分子中第6位碳原子上的伯羟基由于空间位阻较小而易与染料接触[26]。在与染料反应的过程中,纤维素分子先在碱性下形成带负电的阴离子,之后作为亲核试剂进攻活性染料分子上的活性位点[3]。但是在目前的研究中,分子中左右两个吡喃糖第6位碳原子上的伯羟基与OH-发生亲核取代的反应性差异并不清楚。因此,采用ESP、 FMO和两个化学反应描述符CFF、CDD来探讨纤维素二糖分子上左右两个6号碳相连伯羟基的反应性,进而确定分子上能够与OH-发生亲核反应生成纤维素阴离子的活性位点,以提高染料纤维素化合物模型构筑的准确性。
2.2.1 静电势
静电势(ESP)是可视化电荷分布及评估反应物分子远距离亲电、亲核反应性的有效工具,ESP越正(越负)的区域被认为越有可能吸引亲核(亲电)试剂进攻[21]。纤维素二糖分子的ESP如图2(a)所示,静电势为负值的区域(蓝色)电子较为聚集,为亲电反应位点;正值的区域(红色)电子较为稀缺,为亲核反应位点[27]。由图2(a)可以看出,分子中O6-1处静电势红色较深,大小为9.33 kcalmol,为可能的亲核反应位点。这与Cao等[16]通过DFT研究纤维素二糖表明ESP的结果相同。O6-2处静电势蓝色较深,大小为-41.86 kcalmol,为可能的亲电反应位点。因此,纤维素二糖分子上O6-1处羟基较O6-2处更易与OH-发生亲核反应。
2.2.2 前线分子轨道
根据FMO理论, 体系的最高占据轨道(HOMO)和亲电反应有关, 体系的最低未被占据轨道(LUMO)和亲核反应有关[28]。纤维素二糖分子的前线分子轨道示意如图2(b)所示,图2(b)中蓝色和红色分别表示波函数的正相位和负相位。由图2(b)可以看出,HOMO电子云主要分布在1′、3′、6′碳原子所连的氧原子上,说明这些氧原子周围电子密度较大,易发生亲电反应。在1′碳和5′碳之间的环氧基及两个吡喃糖之间的糖苷键上同样显示了HOMO电子云分布,表明其亦为亲电反应活性位点,具有特殊的化学性质。同时可以明显地看到,LUMO电子云分布在6号碳相连的伯羟基上,此处的H原子显示出较强的电子接收能力,表明此处易与和OH-发生亲核反应。值得注意的是,所有的HOMO和LUMO电子云均分布于分子单个吡喃糖上,与郭彩等[29]通过DFT计算纤维素二糖LUMO分布结论一致。这可能是由于纤维素分子在三维空间中存在一定程度的扭曲和构象变化,从而导致FMO电子云分布得不均勻。
2.2.3 简缩局部描述符
CDFT理论中描述亲核(亲电)反应的CFF值f+A(f-A)越正,体系被亲核(亲电)试剂攻击的可能性越强。 CDD的值越正(负),越有可能发生亲核(亲电)反应[6]。本文计算了纤维素二糖分子左右6号碳伯羟基上的氧原子O6-1、O6-2的CFF和CDD的值,结果如表2所示。f-A值的大小顺序为O6-1 基于此分析,可以得出与ESP和FMO分析一致的结论,即在纤维素二糖分子中,由于空间位置的不同,第6位碳上伯羟基化学反应性不同,O6-1所在羟基主要作为亲核攻击位点,O6-2所在羟基主要作为亲电攻击位点。因此,O6-1所在羟基易与OH-反应生成纤维素阴离子,之后与RY210染料分子上的均三嗪和乙烯砜活性基发生反应生成染料纤维素聚合物。 2.3 染料纤维素化合物的断键水解 2.3.1 模型的构建及优化 采用蒙特卡洛方法,在Materials Studio 2019中构筑染料纤维素二聚体化合物模型。为了保证二聚体模型初始几何结构的合理性,本文对纤维素二糖和RY210分子键合的空间位置进行了探索。考虑二糖分子和染料分子之间正反(纤维素二糖以图2(a)所示朝向为正,以沿两个吡喃糖为轴翻转180°后构象为反)、平行、垂直排列形成化合物,将染料中的发色团用H代替以减小计算量[30],共得到如图3(a)所示的8个化合物预设构型。使用Forcite模块对这些构象进行初步几何优化,之后在NVT系综下进行5次退火循环,温度范围为300~800 K,模拟持续时间设置为 50 ps,时间步长设置为 1 fs,最后选择退火后能量最低的一帧在300 K下运行1 000 ps的分子动力学。上述模拟均选用COMPASSⅡ力场,静电力和范德华力的计算均采用atom based方法,计算精度为fine。动力学优化1 000 ps过程中的各个构型能量变化如图3(b)所示,可以看出各构型能量波动平稳,表明其结构处于相对稳定的状态。优化后的最低能量构型及能量大小如图3(c)所示,可以看出8个预设构型中构型r2的平均能量最低,平均为-177.820 kcalmol,表明其分子结构相对最稳定,可用于做进一步的优化和能量计算。 2.3.2 反应活化能 在标准状态(1 atm,298.15 K)下,采用DFT方法计算了图1中7条反应路径的反应活化能,每一步水解反应的活化能结果如图4(a)所示。不同水解体的能级,特别是从反应物到中间体的能量壁垒,决定了水解反应的难易程度。能垒越大,反应发生越困难。由图4(a)可以看出,各水解路径中乙烯砜基键合处发生β-消除反应生成乙烯基砜需要的能垒最低,为17.1 kcalmol,最容易被水解;乙烯基砜被水解为β-羟乙基砜的能垒次之,为27.8 kcalmol;而均三嗪基键合处水解为羟基三嗪能垒最高,为48.5 kcalmol,最难被水解。这可能是由于乙烯基砜中的砜基具有较强的吸电子效应,使乙烯基被极化,与之相连的碳原子电子云密度下降而带部分正电荷,很容易和OH-发生亲核加成而具有更高的反应活性,容易发生水解反应。而与均三嗪基相连的纤维素阴离子吸电子性较弱,碳原子的电子云密度受其影响较低,同时也较难从碳环上离去[25]。各反应路径的能量台阶图如图4(b)所示。由图4(b)可以看出,达到二聚体化合物复合水解路径的水解中间体ts5所需要的活化能最高,为93.4 kcalmol,相较于化合物单水解的水解中间体ts1、ts3、ts4更高,说明染料纤维素化合物更倾向与单活性基水解。因此,当均三嗪基键合处和乙烯砜基键合处共价键水解相互独立时,由于乙烯砜基键合处共价键水解能垒更小,染料纤维素键合的醚键最先发生β-消除反应生成乙烯基砜,之后乙烯基砜被水解为β-羟乙基砜,均三嗪基键合处由于有最大的反应能垒,最后被水解为羟基三嗪。综上,路径5是染料从纤维素上水解脱落的最可能路径。 2.3.3 复合物的局部反应性 为了进一步探究染料纤维素二聚体化合物在不同活性基键合处共价键的水解差异,基于CDFT,本文对二聚体化合物r1上纤维素与乙烯砜基键合处发生β消除反应的两个氢原子β-H1,β-H2、r1上均三嗪基键合处的碳原子Cx(图5 (a))、r1水解产物r1-1(只有乙烯砜基处醚键水解为乙烯砜产物)上均三嗪基键合处的碳原子Cy及r1-1乙烯基上的β碳原子Cz(图5 (b))与OH-的亲核反应性进行了分析,并在表3中给出了描述亲核攻击的简缩福井函数f+A和相对亲电性s+As-A数值,数值越大表明与OH-的反应性越大。在r1分子上, f+A 和s+As-A大小顺序为Cx<β-H1<β-H2,说明乙烯砜键合处的β氢相较于均三嗪基键合处的碳原子更容易被OH-进攻,反应性更大。而对于r1-1, f+A和s+As-A数值的大小顺序为Cy HOMO-LUMO能隙(EL-EH)是描述體系稳定性的参数之一,能隙越大分子越稳定[28]。水解产物r1-1、r1-2、r2-1、r2-2和r3的HOMO-LUMO轨道分布和能隙如图6所示,可见r1-1的HOMO轨道几乎完全分布在碳氮杂环上,而LUMO主要分布在乙烯基上,表明此处易被OH-进攻发生亲核反应。而在均三嗪基与纤维素键合处没有显示出LUMO分布,也说明其亲核性较乙烯基处差。化合物r1-2、r2-1、r2-2、r3的HOMO分布与r1-1类似,除了r2-2的LUMO分布在乙烯基上,r3的LUMO在伯醇上,其他的LUMO分布不明显。此外,能隙大小顺序为r3>r2-1>r1-2>r2-2>r1-1,说明最终水解产物r3最稳定, r1稳定性最差。另外,含有乙烯基砜的化合物稳定性较差,反应性相对较大。同样说明了染料纤维素化合物均三嗪基键合处与OH-的亲核反应性更低,乙烯基砜处与OH-的亲核反应性比均三嗪活性基处更高,更易被水解。 3 结 论 本文首先基于单活性基染料与纤维素间共价键的水解反应机理,推测了异双活性基染料与纤维素键合处共价键可能的水解途径,之后根据FMO、CDFT及分子动力学模拟构建了纤维素二糖和染料分子二聚体化合物模型,最后采用DFT计算了各路径每步水解反应的吉布斯自由能,同时根据FMO和CDFT对二聚体化合物及不同水解产物进行了电子特性分析。结果如下: 1) 基于FMO和CDFT分析纤维素二糖分子上左右两个伯羟基与OH-的亲核反应性发现,其亲核反应性有显著差异。计算的染料纤维素二聚体化合物模型不同水解路径反应自由能推断的活性黄210染料与纤维素键合处的共价键水解过程为:活性黄210在乙烯砜基键合处的醚键先发生β-消除反应水解为乙烯砜,能垒为17.1 kcalmol,然后乙烯基砜与OH-发生亲核加成,水解为β-羟乙基砜,能垒为27.8 kcalmol;在均三嗪基键合处最后水解为羟基三嗪,能垒为48.6 kcalmol。 2) 基于CDFT分析二聚体化合物及其水解产物上与OH-发生反应位点的局部亲核性及各水解产物能隙表明:乙烯砜基键合处发生β-消除反应的两个氢原子与OH-的亲核性最大, β-消除反应发生最容易;化合物醚键水解后的乙烯基上与OH-发生亲核加成的碳原子亲核性次之,乙烯基水解反应发生较容易;均三嗪基键合处与纤维素相连的碳原子亲核反应性最小,水解反应发生最难。各水解产物能隙大小与水解难易程度有关,能隙越大,水解反应发生越难。 参考文献: [1]BENEDETTO C D, MACARIO A, SICILIANO C, et al. Adsorption of reactive blue 116 dye and reactive yellow 81 dye from aqueous solutions by multi-walled carbon nanotubes[J]. Materials, 2020, 13(12): 2757. [2]WEN J, ZHU Z H, CHEM K C. Study on the hydrolysis kinetics of vinylsulfonyl reactive dye-fiber bond[J]. Dyes and Pigments, 1989, 10(3): 217-237. [3]MORITA Z, YAMADA A, SHIGEHARA K, et al. The hydrolysis of the reactive groups, and side reaction, for a mixed heterobifunctional reactive dye (CI reactive red 194) and related compounds[J]. Dyes and Pigments, 1996, 30(2): 151-171. [4]WANG L X, GAO X P, WANG S C, et al. Axial dual atomic sites confined by layer stacking for electroreduction of CO2 to tunable syngas[J]. Journal of the American Chemical Society, 2023, 145(24): 13462-13468. [5]LANDIN-SANDOVAL V J, MENDOZA-CASTILLO D I, SELIEM M K, et al. Physicochemical analysis of multilayer adsorption mechanism of anionic dyes on lignocellulosic biomasses via statistical physics and density functional theory[J]. Journal of Molecular Liquids, 2021, 322: 114511. [6]GEERLINGS P, PROFT F D, LANGENAEKE W. Conceptual density functional theory[J]. Chemical Reviews, 2003, 103: 1793-1873. [7]TRANG B, LI Y L, XUE X S, et al. Low-temperature mineralization of perfluo-rocarboxylic acids[J]. Science, 2022, 377(6608): 839-845. [8]KARASIEV V V, HINZ J, HU S X, et al. On the liquid-liquid phase transition of dense hydrogen[J]. Nature, 2021, 600(7889): E12-E14. [9]FANG G Q, WEI F F, LIN J, et al. Retrofitting Zr-Oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity[J]. Journal of the American Chemical Society, 2023, 145(24): 13169-13180. [10]PEI L J, LUO Y N, SALEEM M A, et al. Sustainable pilot scale reactive dyeing based on silicone oil for improving dye fixation and reducing discharges[J]. Journal of Cleaner Production, 2021, 279: 123831. [11]張永波. 硅基非水介质染色体系中活性染料水解、键合机理及密度泛函理论研究[D]. 杭州: 浙江理工大学, 2019. ZHANG Y B. Study of Hydrolysis, Bonding Mechanism and Density Functional Theory for Reactive Dyes in Siloxane Non-Aqueous Media Dyeing System[D]. Hangzhou: Zhejiang Sci-Tech University, 2018. [12]KAUSAR A, REHMAN S U, KHALID F, et al. Cellulose, clay and sodium alginate composites for the removal of methylene blue dye: Experimental and DFT studies[J]. International Journal of Biological Macromolecules, 2022, 209: 576-585. [13]MATTHEWS J F, SKOPEC C E, MASON P E, et al. Computer simulation studies of microcrystalline cellulose Ibeta[J]. Carbohydrate Research, 2006, 341(1): 138-152. [14]SHAO C F, SHAO Q, WANG X Y, et al. Study on cellulose degradation induced by hydroxyl radical with cellobiose as a model using GC-MS, ReaxFF simulation and DFT computation[J]. Carbohydrate Polymers, 2020, 233: 115677. [15]WANG Q, SONG H, PAN S, et al. Initial pyrolysis mechanism and product formation of cellulose: An experimental and density functional theory(DFT) study[J]. Scientific Reports, 2020, 10(1): 3626. [16]CAO B B, DU J Y, DU D M, et al. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra[J]. Carbohydrate Polymers, 2016, 149: 348-356. [17]ZEPP R G, HOIGN J, BADER H. Nitrate-induced photooxidation of trace organic chemicals in water[J]. Environmental Science and Technology, 1987, 21: 450. [18]BURSCH M, CALDEWEYHER E, HANSEN A, et al. Understanding and quantifying London dispersion effects in organometallic complexes[J]. Accounts of Chemical Research, 2019, 52(1): 258-266. [19]KEPP K P. Benchmarking density functionals for chemical bonds of gold[J]. Journal of Physical Chemistry A, 2017, 121(9): 2022-2034. [20]LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. [21]HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. [22]MORELL C, GRAND A, TORO-LABBA. New dual descriptor for chemical reactivity[J]. Journal of Physical Chemistry A, 2005, 109(1): 205-212. [23]FU R, LU T, CHEN F W. Comparing methods for predicting the reactive site of electrophilic substitution[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 628-639. [24]ROY R K, KRISHNAMURTI S, GEERLINGS P, et al. Local softness and hardness based reactivity descriptors for predicting intra-and intermolecular reactivity sequences: Carbonyl compounds[J]. Journal of Physical Chemistry A, 1998, 102(21): 3746-3755. [25]熊伟. 含磺酰胺基取代一氯均三嗪硫酸酯乙基砜双活性基团反应性染料的合成及应用[D]. 大连: 大连理工大学, 2020. XIONG W. Study and Application of Bifunctional Reactive Dyes with Sulfonamide-Containing Chloro-s-TriazineEthyl Sulfone Sulfate Groups[D]. Dalian: Dalian University of Technology, 2020. [26]PRUS' S, KULPIN'SKI P, MATYJAS-ZGONDEK E, et al. Eco-friendly dyeing of cationised cotton with reactive dyes: Mechanism of bonding reactive dyes with CHPTAC cationised cellulose[J]. Cellulose, 2022, 29(7): 4167-4182. [27]KENOUCHE S, SANDOVAL-YAEZ C, MARTNEZ-ARAYA J I. The antioxidant capacity of myricetin: A molecular electrostatic potential analysis based on DFT calculations[J]. Chemical Physics Letters, 2022, 801: 139708. [28]AOUCHICHE H A, DJENNANE S, BOUCEKKINE A. DFT study of conjugated biheterocyclic oligomers exhibiting a very low HOMO-LUMO energy gap[J]. Synthetic Metals, 2004, 140(2-3): 127-133. [29]郭彩, 周華晶, 关清卿, 等. 基于密度泛函理论研究纳米纤维素层状双金属氢氧化物复合材料的光热稳定性[J]. 纤维素科学与技术, 2023, 31(1): 10-15. GUO C, ZHOU H J, GUAN Q Q, et al. Study on the photothermal stability of cellulose nanofiberslayered bimetal hydroxides composites based on density functional theory[J]. Journal of Cellulose Science and Technology, 2023, 31(1): 10-15. [30]TASAKA T, MATSUMOTO T, NAGASHIMA U, et al. Potential energy curve for singlet-oxygen quenching reaction by vitamin E[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 442: 114749. Theoretical calculation of alkaline hydrolysis of heterobifunctional reactive dye-cellulose compounds BI Haodong1a, WANG Ying1b, ZHAO Xu1a, ZHU Bo1a, SUN Chang1a, FU Yizheng2, LIU Jianli1a (1a.College of Textile Science and Engineering; 1b.National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; 2.School of Materials Science and Engineering, North University of China, Taiyuan 030051, China) Abstract:Heterobifunctional reactive dyes are widely used to dye cotton and protein fabrics owing to their characteristic such as excellent dyeing fastness, high lightfastness, and wide range of colors. The primary cause of color fading and coloring during the washing of cotton fabrics is the hydrolysis of covalent bonds between dyes and cellulose. However, at present, people are only familiar with the mechanism of hydrolysis of covalent bonds formed between individual active groups and cellulose such as the common halogenated homotriazine group and vinyl sulfone group. Specifically, the ether bond formed by halotriazine active group and cellulose, and the ether bond formed by vinyl sulfone group and cellulose will be hydrolyzed under alkaline conditions. Halogenated triazine reactive group will be hydrolyzed into hydroxytriazine and vinyl sulfone reactive group will be hydrolyzed into β-hydroxyethyl sulfone, while the reaction mechanism that results in the breaking of covalent bonds between different reactive groups and cellulose molecules remains unclear. Based on the principle of quantum mechanics, quantum chemical calculations can accurately simulate the movement and interaction of electrons, as well as the formation and fracture of chemical bonds. These make predicting the properties of molecules and reactions without relying on experimental data possible. Thus, quantum chemical calculations are widely used to describe molecular structures, reaction mechanisms and energy changes. The wave function theory and density-functional theory (DFT) are two important parts of quantum chemical calculations. The frontier molecular orbital (FMO) and conceptual density functional theory (CDFT) are two representative theories to predict and rationalize molecular reactivity qualitatively and quantitatively. Some chemical reaction descriptors obtained from CDFT like Fukui function, chemical hardness or softness, electrophilicity or nucleophilicity are a new type of structural index specially used to describe the chemical reactivity of substances. This article combined wave function theory and CDFT to investigate chemical characteristics of the hydrolysis pathway of the covalent bond between heterobifunctional reactive dye and cellulose under alkaline conditions, with the heterobifunctional reactive dye named Reactive Yellow 210 (RY210) being used as an example. In order to reduce the complexity of the model, the chromophores in RY210 molecule that are not related to the reaction were replaced by hydrogen atoms. At the same time, according to previous studies, cellobiose was substituted for cellulose molecules. The research process was divided into three steps. Firstly, the possible pathways and products of RY210 and cellulose polymer were conjectured based on the hydrolysis mechanism of the covalent bond between a single reactive group dye and cellulose. The ether bond formed by the active group of triazine group and cellulose will be hydrolyzed into hydroxytriazine, and the ether bond formed by the active group of vinyl sulfone and cellulose will be β-eliminated to generate vinyl sulfone, which will be further hydrolyzed into β-hydroxyethyl sulfone. Based on this known mechanism, it is hypothesized that there are seven possible hydrolysis pathways which involve hydrolysis of one reactive group alone, followed by the other reactive group, as well as hydrolysis of both reactive groups at the same time. Secondly, the study constructed a dye-cellulose polymer model. To do this, the study investigated the sites on the cellobiose molecule where OH- is easy to react with using electrostatic potential (ESP), frontier molecular orbital theory (FMO) and two chemical reaction descriptors (CFF and CDD) based on DFT. The model was constructed by taking into account their three spatial arrangements of the cellobiose and dye molecules in orthogonal, anticlinal, parallel, and perpendicular directions. Then, these structures were optimized by MD simulations, and the most stable polymer structure was identified. Further, the study calculated the Gibbs free energies of different hydrolysis pathways based on the theory of M06-2X6-311G(d). Additionally, the local nucleophilic reactivity of dye-cellulose compounds at the bonding sites of triazine and vinyl sulfone groups with OH- was compared to further verify the previous conclusions. The findings demonstrate that the cellobiose-dye polymer was readily hydrolyzed at the bonding with vinyl sulfone, but could be hydrolyzed at the bonding with triazine difficultly. The covalent bonding of vinyl sulfone with OH- displayed higher nucleophilic activity. Initially, the ether bond was hydrolyzed to form vinyl sulfone with a reaction energy barrier of 17.1 kcalmol. Following this, vinyl sulfone was hydrolyzed to produce β-hydroxyethyl sulfone with a reaction energy barrier of 27.8 kcalmol. The nucleophilic reactivity at the homotriazine group was the lowest, and the homotriazine group was hydrolyzed into hydroxytriazine with a significant amount of energy at 48.6 kcalmol. This study is helpful to further understand the mechanism of hydrolysis of heterobifunctional reactive dyes from cellulose under alkaline conditions. At the same time, the study also provides some ideas for slowing down the fading of heterobifunctional dyes from fabrics and washing crossovers, as well as designing efficient and environmentally friendly reactive dyes. Key words: reactive dyes; cellulose; dye hydrolysis; density functional theory; wave function theory; nucleophilic reactivity; reaction activation energy