有向拓扑结构下复杂网络系统的同步验证

2024-04-21 16:10王磊张书源葛思彤刘洋
关键词:平方和网络系统耦合

王磊 张书源 葛思彤 刘洋

摘 要:研究了具有非线性耦合的复杂网络系统的同步验证问题.基于一般的非二次型Lyapunov函数,建立了保守性更弱的有向拓扑结构下的非线性网络系统的同步判据.对于多项式网络系统,将可同步问题转化为平方和优化问题,由此来高效地求解高阶的多项式Lyapunov函数.求解平方和优化问题隶属于凸优化框架,因此可以在多项式时间内自动地实现系统的同步验证.最后,通过一个数值仿真实例验证了理论结果的有效性,同时说明了所提出的方法可以使用一个较小的耦合强度下界来确保同步实现.

关键词:多项式Lyapunov函数;同步验证;复杂网络系统;平方和优化

中图分类号:O231.2文献标志码:A文章编号:1000-2367(2024)02-0027-06

在过去的几十年里,复杂网络系统作为一门跨学科研究在物理[1、控制科学2、社会科学3、经济学4等领域引起了广泛的关注.同步是自然界中常见的集体行为现象,在某种程度上揭示了动物群体聚集行为的本质,如蜂拥现象[5-6.因此,开展复杂网络系统的同步研究工作具有重大的科学意义[7-12.

目前,现有研究工作中大都是在“手动”构造二次型Lyapunov函数的基础上[13-17,致力于研究具有线性耦合的复杂网络系统的同步问题.然而,在稳定性理论中,有相当多的稳定性系统不存在二次型Lyapunov函数,而存在更一般的 Lyapunov函数.基于这个事实,寻找一般的Lyapunov函数来证明非线性系统的同步是合理的.例如,基于一般的Lyapunov函数构造,学者们通过提出的Lyapunov V-稳定性方法研究了复杂动态网络的全局同步问题[18-19.因此,通过“自动”生成一般的非二次型Lyapunov函数来实现具有非线性耦合的复杂网络系统的同步验证是十分必要的.

幸运的是,平方和(sum-of-squares,SOS)分解框架提供了一种弱保守的方式计算稳定性系统的多项式Lyapunov函数[20-25.PAPACHRISTODOULOU等[20提出了一种Lyapunov函数算法构造的思想,用以研究非线性系统的稳定性问题.随后,进一步形成了基于SOS分解的系统分析教程[21.ZHANG等[22提出了一种迭代的SOS优化算法求解多项式矩阵不等式,实现了多项式网络系统的稳定性验证.近来,学者们[23-25利用SOS优化方法设计程序化算法搜索多項式Lyapunov函数,验证了无向及有向拓扑下复杂网络系统的同步判据.

在本文中,通过SOS优化框架下的多项式Lyapunov函数算法计算,将致力于研究具有非线性耦合的复杂网络系统的同步验证问题.首先,通过松弛经典的类Lipschitz条件,系统地构造一般的Lyapunov函数并建立保守性更弱的有向拓扑结构下非线性网络系统的同步判据.然后,通过多元多项式的SOS分解技术,将非负性约束用SOS条件替代,通过求解SOS优化问题自动地寻找多项式Lyapunov函数,从而实现系统的同步验证.最后,给出一个仿真实例来说明所提出方法的有效性.

1 问题描述

2 主要结果

3 数值仿真

4 结 论

通过构造一般的Lyapunov函数,本文研究了有向拓扑结构下非线性耦合网络系统的同步问题.对于多项式网络系统, 利用SOS优化方法自动地寻找弱保守的多项式Lyapunov函数,实现了系统同步验证.最后, 给出了一个洛伦兹系统的仿真实例,验证了理论结果的有效性.在今后的研究中, 将致力于推广所提出的SOS优化方法,研究异构多项式和非多项式网络系统的同步问题.

参 考 文 献

[1]ARENAS A,D?AZ-GUILERA A,KURTHS J,et al.Synchronization in complex networks[J].Physics Reports,2008,469(3):93-153.

[2]CORNELIUS S P,KATH W L,MOTTER A E.Realistic control of network dynamics[J].Nature Communications,2013,4:1942.

[3]XUAN Q,ZHANG Z Y,FU C B,et al.Social synchrony on complex networks[J].IEEE Transactions on Cybernetics,2018,48(5):1420-1431.

[4]BARAHONA M,PECORA L M.Synchronization in small-world systems[J].Physical Review Letters,2002,89(5):054101.

[5]TANNER H G,JADBABAIE A,PAPPAS G J.Flocking in fixed and switching networks[J].IEEE Transactions on Automatic Control,2007,52(5):863-868.

[6]VICSEK T,CZIR?K A,BEN-JACOB E,et al.Novel type of phase transition in a system of self-driven particles[J].Physical Review Letters,1995,75(6):1226-1229.

[7]PANTELEY E,LOR?A A.Synchronization and dynamic consensus of heterogeneous networked systems[J].IEEE Transactions on Automatic Control,2017,62(8):3758-3773.

[8]LIANG Q,SHE Z,WANG L,et al.Characterizations and criteria for synchronization of heterogeneous networks to linear subspaces[J].SIAM J Control Optim,2017,55(6):4048-4071.

[9]WANG L,CHEN M Z Q,WANG Q G.Bounded synchronization of a heterogeneous complex switched network[J].Automatica,2015,56:19-24.

[10]STILWELL D J,BOLLT E M,ROBERSON D G.Sufficient conditions for fast switching synchronization in time-varying network topologies[J].SIAM Journal on Applied Dynamical Systems,2006,5(1):140-156.

[11]QIN J H,MA Q C,YU X H,et al.On synchronization of dynamical systems over directed switching topologies:an algebraic and geometric perspective[J].IEEE Transactions on Automatic Control,2020,65(12):5083-5098.

[12]HE W L,CHEN G R,HAN Q L,et al.Multiagent systems on multilayer networks:synchronization analysis and network design[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,47(7):1655-1667.

[13]PECORA L M,CARROLL T L.Master stability functions for synchronized coupled systems[J].Physical Review Letters,1998,80(10):2109-2112.

[14]BELYKH V N,BELYKH I V,HASLER M.Connection graph stability method for synchronized coupled chaotic systems[J].Physica D:Nonlinear Phenomena,2004,195(1/2):159-187.

[15]DELELLIS P,DI BERNARDO M,RUSSO G.On QUAD,lipschitz,and contracting vector fields for consensus and synchronization of networks[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2011,58(3):576-583.

[16]WEN G H,DUAN Z S,CHEN G R,et al.Consensus tracking of multi-agent systems with lipschitz-type node dynamics and switching topologies[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2014,61(2):499-511.

[17]ZHANG Z,YAN W S,LI H P.Distributed optimal control for linear multiagent systems on general digraphs[J].IEEE Transactions on Automatic Control,2021,66(1):322-328.

[18]XIANG J,CHEN G R.On the V-stability of complex dynamical networks[J].Automatica,2007,43(6):1049-1057.

[19]ZHAO J,HILL D J,LIU T.Stability of dynamical networks with non-identical nodes:a multiple V-Lyapunov function method[J].Automatica,2011,47(12):2615-2625.

[20]PAPACHRISTODOULOU A,PRAJNA S.On the construction of Lyapunov functions using the sum of squares decomposition[C]//Proceedings of the 41st IEEE Conference on Decision and Control.[s.l.]:IEEE,2003:3482-3487.

[21]PAPACHRISTODOULOU A,PRAJNA S.A tutorial on sum of squares techniques for systems analysis[C]//Proceedings of the 2005,American Control Conference.[s.l.]:IEEE,2005:2686-2700.

[22]ZHANG S Y,SONG S Z,WANG L,et al.Stability verification for heterogeneous complex networks via iterative SOS programming[J].IEEE Control Systems Letters,2023,7:559-564.

[23]LIANG Q Y,SHE Z K,WANG L,et al.General Lyapunov functions for consensus of nonlinear multiagent systems[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2017,64(10):1232-1236.

[24]ZHANG S Y,WANG L,LIANG Q Y,et al.Polynomial Lyapunov functions for synchronization of nonlinearly coupled complex networks[J].IEEE Transactions on Cybernetics,2022,52(3):1812-1821.

[25]LIANG Q Y,ONG C J,SHE Z K.Sum-of-squares-based consensus verification for directed networks with nonlinear protocols[J].International Journal of Robust and Nonlinear Control,2020,30(4):1719-1732.

[26]GODSIL C,ROYLE G.Algebraic Graph Theory[M].New York:Springer-Verlag,2001.

[27]YU W W,CHEN G R,CAO M.Consensus in directed networks of agents with nonlinear dynamics[J].IEEE Transactions on Automatic Control,2011,56(6):1436-1441.

[28]LIU X W,CHEN T P.Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix[J].Physica A:Statistical Mechanics and Its Applications,2008,387(16/17):4429-4439.

[29]LOFBERG J.YALMIP:a toolbox for modeling and optimization in MATLAB[C]//2004 IEEE International Conference on Robotics and Automation(IEEE Cat.No.04CH37508).[s.l.]:IEEE,2005:284-289.

[30]MOSEK A.The MOSEK optimization toolbox for MATLAB manual[EB/OL].[2022-11-19].https://docs.mosek.com/7.0/toolbox/index.html.

Synchronization verification for complex networked systems with directed graph

Wang Lei, Zhang Shuyuan, Ge Sitong, Liu Yang

(School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China)

Abstract: In this article, we study the problem of synchronization verification for complex networked systems with nonlinear coupling. Based on general form of Lyapunov functions, a less conservative synchronization criterion is proposed for the nonlinear networked systems with directed graph. Then, the synchronization problem for polynomial networked systems can be transformed into a sum-of-squares optimization problem, which falls within the convex optimization framework, yielding polynomial Lyapunov functions efficiently to realize the automatic synchronization verification in polynomial time. Finally, the effectiveness of the theoretical results is demonstrated by a simulation example, where the synchronization of Lorenz system is achieved by using a smaller lower bound of coupling strength.

Keywords: polynomial Lyapunov functions; synchronization verification; complex networked systems; sum-of-squares optimization

[責任编校 陈留院 赵晓华]

猜你喜欢
平方和网络系统耦合
非Lipschitz条件下超前带跳倒向耦合随机微分方程的Wong-Zakai逼近
费马—欧拉两平方和定理
利用平方和方法证明不等式赛题
基于DEMATEL-ISM的军事通信网络系统结构分析
勾股定理的扩展
高速公路网络系统配置浅析
关于四奇数平方和问题
基于“壳-固”耦合方法模拟焊接装配
时滞复杂网络系统的保性能控制
求解奇异摄动Volterra积分微分方程的LDG-CFEM耦合方法