基金项目:国家自然科学基金(82070392)
通信作者:韩露,E-mail:hanlu19871015@163.com;宋铭,E-mail:songming920221@163.com
【摘要】细胞焦亡是一种新型促炎性细胞程序性死亡方式,其由NOD样受体热蛋白结构域相关蛋白3炎症小体活化启动,gasdermin D蛋白活性N端破坏细胞膜完整性,导致细胞死亡,随后引发炎症级联反应加重组织损伤。有研究表明,细胞焦亡可能参与心肌缺血再灌注损伤(MIRI)的发生发展。MIRI是限制急性心肌梗死临床疗效的重要原因之一。针对细胞焦亡"""""" 的药物在MIRI疾病模型中能够挽救细胞焦亡所致心肌损伤。现就细胞焦亡在MIRI中的作用做一综述,并在此基础上探讨可能的治疗靶点。
【关键词】缺血再灌注损伤;细胞焦亡;氧化应激;炎症反应;药物治疗
【DOI】10.16806/j.cnki.issn.1004-3934.2024.06.014
The Role of Pyroptosis in Myocardial Ischemia Reperfusion Injury
JIAO Yaqiong1,2,LI Yulin1,3,HU Bo’ang1,ZHONG Ming1,HAN Lu1,2,SONG Ming1
(1.National Key Laboratory for Innovation and Transformation of Luobing Theory;The Key Laboratory of Cardiovascular Remodeling and Function Research,Chinese Ministry of Education,Chinese National Health Commission and Chinese Academy of Medical Sciences;Department of Cardiology,Qilu Hospital of Shandong University,Jinan 250012,Shandong,China;2.Department of General Practice,Qilu Hospital of Shandong University,Jinan 250012,Shandong,China;3.Department of Cardiology,Shandong Provincial Hospital Affiliated to Shandong First Medical University,Jinan 250001,Shandong,China)
【Abstract】Pyroptosis is a novel pro-inflammatory programmed cell death modality,which is initiated by NOD-like receptor thermal protein domain associated protein 3 inflammasome activation,and the active N-terminus of gasdermin D destroys the integrity of the cell membrane,leading to cell death,and then triggering an inflammatory cascade to aggravate tissue damage.Studies have shown that pyroptosis may be involved in the development of myocardial ischemia reperfusion injury (MIRI).MIRI is one of the important reasons limiting the clinical efficacy of acute myocardial infarction.Drug targeting pyroptosis can save myocardial injury caused by pyroptosis in a disease model of MIRI.This article reviews the role of pyroptosis in myocardial ischemia reperfusion injury,and discusses possible therapeutic targets on this basis.
【Keywords】Ischemia reperfusion injury;Pyroptosis;Oxidative stress;Inflammatory reaction;Drug treatment
急性心肌梗死(acute myocardial infarction,AMI)致死率在心血管疾病中居首位[1],据统计,AMI所致心源性休克30 d病死率为40%,1年病死率约为50%[2],每年死于AMI的人数为全球总死亡人数的15%[3]。再灌注治疗是AMI治疗中关键一环,药物溶栓、经皮冠状动脉介入治疗和冠状动脉旁路移植术能够有效恢复组织血供,挽救患者生命[4]。然而再灌注治疗后,仍会发生心肌顿抑、心律失常甚至心力衰竭[5],称为心肌缺血再灌注损伤(myocardial ischemia reperfusion injury,MIRI)。但是,目前对于MIRI仍无有效的预防和治疗手段,因此深入探究MIRI的机制对提高AMI患者的生存率及改善预后具有重要意义。
针对MIRI的机制,现有的研究包括细胞凋亡、氧化应激、自噬、细胞钙超载和炎症反应等[6]。然而根据以上的研究成果进行临床转化时并未得到预期的结果,即不能减轻临床患者的心肌损伤程度及改善疾病结局,因此考虑仍有潜在的作用机制未被发现。近期细胞焦亡的研究引起笔者的关注,细胞焦亡是一种由gasdermin(GSDM)家族蛋白介导的细胞程序性死亡(programmed cell death,PCD)[7],临床研究发现经皮冠状动脉介入治疗术后患者血清中gasdermin D蛋白(GSDMD)表达增加,提示MIRI与细胞焦亡有关[8]。
现就细胞焦亡在MIRI中的作用做一综述,并在此基础上探讨潜在的治疗靶点。
1" 细胞焦亡与MIRI
1.1" 细胞焦亡的机制
细胞焦亡是由NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎症小体启动、GSDM家族蛋白执行的一种促炎性PCD新方式。许多病理因素参与细胞焦亡的发展,包括氧化应激、炎性细胞因子释放和钙超载等[9]。越来越多的实验数据[10]表明,细胞焦亡通过引起心肌细胞、心脏成纤维细胞、血管内皮细胞、巨噬细胞等多种细胞的死亡和炎症反应,促进细胞肥大、增加心肌间质纤维化进而导致心肌重构,在MIRI中起着重要作用。当细胞发生焦亡时,细胞核浓缩、染色质DNA断裂、细胞膜破裂产生1.1~2.4 nm的孔隙。目前的研究[11]显示,细胞焦亡有3种途径:经典途径、非经典途径和新近发现的其他途径。其中,经典途径和非经典途径参与MIRI的形成。
经典途径是由各种病理性因素刺激模式识别受体(pattern recognition receptor,PRR)识别损伤相关分子模式(damage-associated molecular pattern,DAMP),进而形成炎症小体复合物,该复合物由NLRP3、细胞凋亡相关斑点样蛋白质、含半胱氨酸的胱天蛋白酶-1前体(pro-caspase-1)组成。复合物内的pro-caspase-1自切割形成活性胱天蛋白酶(caspase)-1,caspase-1具有切割GSDMD,使之形成亲脂性GSDMD-N的功能。GSDMD-N结合质膜内侧的小叶脂质后使细胞膜破裂穿孔,进而引发细胞焦亡[12]。
非经典途径中,pro-caspase-4/-5/-11可以在不形成复合物的情况下,经结合细菌表面脂多糖激活,随后经两种方式介导细胞焦亡,一是切割GSDMD形成活性N端,进而导致质膜破裂;二是经泛连接蛋白-1(pannexin-1)/ATP/非特异性阳离子通道受体P2X7通路激活经典途径,共同促进细胞损伤[13]。
1.2" 细胞焦亡促进MIRI
多项体内外研究证明经典途径介导MIRI。Luan等[14]发现MIRI大鼠心肌组织中NLRP3、caspase-1的mRNA和蛋白水平均增加,肉桂酸通过抑制NLRP3/caspase-1/GSDMD信号通路可有效地保护心肌细胞免受MIRI的侵害。Wu等[15]通过检测MIRI大鼠心肌组织以及心肌细胞中蛋白表达,发现NLRP3、凋亡相关斑点样蛋白质、caspase-1和GSDMD的表达均升高,七氟醚通过抑制P2X7/NLRP3介导的细胞焦亡缓解MIRI。Li等[16]通过MIRI大鼠和心肌细胞实验说明栀子苷通过AMPK信号通路显著抑制NLRP3炎症小体活化,并减少心肌细胞的细胞焦亡情况。除了使用动物模型和体外细胞培养技术进行研究之外,基因敲除小鼠的应用进一步证明细胞焦亡在促进组织损伤中起重要作用。敲除小鼠NLRP3,可减少白细胞介素(interleukin,IL)-1β和caspase-1活化,减轻心肌梗死小鼠心脏损伤,减缓心室重塑[17]。心肌细胞特异性GSDMD缺陷MIRI小鼠,心肌细胞死亡情况显著降低[8]。综上可知,细胞焦亡经典通路在MIRI的发生发展中起重要作用,其中,NLRP3炎症小体的激活是始动步骤,提示针对其激动剂或其本身应用抑制剂可有效阻止细胞焦亡启动,另外,以细胞焦亡经典通路中的下游关键分子caspase-1及GSDMD为靶点研发的药物可能改善MIRI患者的预后。
关于非经典途径的作用,Sun等[18]的研究表明,过表达Beclin1可通过促进细胞自噬,抑制caspase-4的活化及其介导的细胞焦亡,显著减轻MIRI模型小鼠的心肌微血管损伤,减小心肌梗死面积;此外,敲低钙结合蛋白(S100A12)可抑制caspase-4介导的细胞焦亡,减轻缺/复氧所致的心肌细胞损伤[19]。另一研究[20]则检测了MIRI后GSDMD缺陷小鼠心肌细胞中caspase-11以及GSDMD的蛋白表达,结果证明caspase-11/GSDMD途径是介导MIRI的关键。此外,miR-33a-5p可激活细胞焦亡的经典及非经典通路,共同促进心肌组织损伤[21]。从以上研究可知,细胞焦亡非经典通路在MIRI中的作用举足轻重,其补充了经典通路,提出caspase家族中除caspase-1以外其他分子介导细胞焦亡进而导致MIRI的情况,为全面认识临床问题提供证据。
2" 缺血再灌注过程引发细胞焦亡的机制
2.1" 氧化应激
心肌缺血和再灌注过程可产生大量活性氧(reactive oxygen species,ROS),尤其是再灌注初期,ROS的大量积累激活NLRP3炎症小体,同时可使心肌中IL-18活化,进而介导细胞焦亡,加重心肌组织损伤[22]。五氯联苯诱导内皮细胞产生过量的ROS,过量的ROS导致NLRP3的高表达,进而激活NLRP3炎症小体,诱导微血管内皮细胞焦亡[23]。有研究[24]显示,核转录因子红系2相关因子2(nuclear factor-erythroid 2-related factor 2,Nrf2)可减少ROS生成,毛冬青苯丙素类化合物通过修饰Keap1的Cys77和Cys434残基,调节Nrf2泛素化和核转位,改善氧化应激,抑制NLRP3炎症小体激活,减少细胞焦亡发生,减轻心肌细胞MIRI。抑制miR-132可以通过靶向沉默信息调节因子1激活PGC-1α/Nrf2信号传导进而抑制氧化应激诱导的细胞焦亡,从而改善MIRI[25]。
2.2" 自噬
自噬具有调节细胞焦亡,减轻MIRI的作用。自噬可降解受损细胞器,例如清除受损线粒体,从而减少DAMP的释放,抑制NLRP3的激活,对细胞焦亡所致的心肌损伤具有保护作用。有研究[26]指出,麝香保心丸通过mmu_circ_0005874/mmu-miR-543-3p/Map3k8之间的相互作用促进自噬体生成,进而降解NLRP3炎症小体以抑制细胞焦亡和氧化应激,提高MIRI后心肌细胞存活率。3,4-苯并芘通过芳香烃受体激活p53-BNIP3途径,导致自噬体生成减少,进而使受损细胞器的清除减少,NLRP3活化水平增加,NLRP3介导的细胞焦亡加重[27]。然而,当自噬体经Beclin1通路积累超过一定限度,其保护作用发生反转,成为促进细胞死亡的危险因素,恩格列净的心脏保护作用部分是通过减少自噬体的形成实现的[28]。
2.3" 钙超载
缺氧使细胞内pH值降低,促进细胞内钙水平升高,快速复氧进一步加重离子失衡,导致细胞内钙超载,促进NLRP3炎症小体的激活,引发细胞焦亡,这意味着减少钙超载可减少NLRP3介导的细胞焦亡。有证据[29]显示,在大鼠MIRI模型中,内质网驻留蛋白44与细胞内离子通道1,4,5-三磷酸肌醇受体结合可以抑制Ca2+的运输,从而减少细胞内Ca2+释放,进而减少NLRP3/caspase-1通路活化,减轻细胞焦亡和MIRI。
3" 细胞焦亡引发的炎症反应介导MIRI
细胞焦亡使细胞膜破裂,细胞内容物从孔隙流出,引发炎症反应,进一步加重MIRI。内容物按成分可分为两类:促炎因子和其他细胞成分。其中,促炎因子IL-1β和IL-18前体被caspase-1切割后活化,经膜孔流出细胞,在促进炎症方面起主要作用。研究[30]发现,巨噬细胞经细胞焦亡经典通路,释放细胞内活化的IL-1β引发炎症级联反应。中性粒细胞则对caspase-4/-5/-11诱导的非经典途径敏感,在缺血再灌注早期,抗菌肽可激活TLR4/P2X7R/NLRP3通路,导致中性粒细胞发生焦亡释放IL-1β引发炎症反应,并最终导致MIRI[31]。环氧化酶抑制剂艾拉莫德抑制COX2/NLRP3信号通路介导的细胞焦亡,减少IL-1β、IL-18、IL-6和肿瘤坏死因子-α等炎症因子分泌,减轻炎症反应,发挥心脏保护作用[32]。
此外,细胞内容物从膜孔流出是导致炎症反应的另一机制。在细胞内,高迁移率族蛋白B1(high mobility group box 1 protein,HMGB1)是一种高度保守的染色体蛋白,充当DNA伴侣。细胞焦亡导致细胞膜破裂后,HMGB1从细胞内流出,随后与Toll样受体(Toll-like receptor,TLR)等受体或晚期糖基化终末产物受体结合,触发炎症等一系列活动,加重组织损伤。S100家族是一类钙结合蛋白,S100A12是S100家族成员之一,其在心肌缺血性疾病中表达升高。有学者[19]证明,敲低人心肌细胞(AC16)中S100A12的表达可减轻caspase-4介导的细胞焦亡,减少炎性细胞因子的产生,从而减轻缺/复氧所致心肌细胞损伤。从破裂细胞中溢出的组蛋白和DNA可被TLR4识别,激活下游信号通路,促进NLRP3炎症小体复合物的形成,诱导二次焦亡。研究[33]显示,利用脱氧核糖核酸酶处理MIRI模型小鼠,可有效降低组蛋白和DNA在心肌中的聚集,减轻炎症反应,改善左心室功能。细胞破裂后其内容物均可以作为DAMP被PRR识别,被刺激的PRR募集“专业”免疫细胞或非免疫细胞,引起炎症反应,促进组织纤维化,加重MIRI[34]。
4" 针对细胞焦亡的治疗靶点
线粒体功能障碍时,由线粒体产生的ROS激活下游NLRP3炎症小体,进而激活细胞焦亡。给予抗氧化剂或ROS清除剂可以显著减小心肌梗死面积,减轻MIRI。N-乙酰半胱氨酸是一种抗氧化剂,通过减少ROS生成,抑制NLRP3炎症小体激活,使GSDMD-N表达水平降低,减轻细胞焦亡,改善MIRI。与N-乙酰半胱氨酸作用机制相似的具有抗ROS生成,抑制细胞焦亡,改善心肌损伤的药物还有褪黑激素、利拉鲁肽、瑞舒伐他汀和沙库巴曲缬沙坦等[35]。
细胞焦亡经典通路成员抑制剂能够减轻心肌损伤。NLRP3炎症小体的形成是细胞焦亡的启动步骤,抑制其激活对减轻细胞焦亡有重要作用。2-[(2-氯苯基)甲基]丙烯酸乙酯作为NLRP3炎症小体抑制剂,可抑制NLRP3炎症小体激活,减小心肌梗死面积,减轻细胞焦亡所致心肌损害[36]。人参醇通过HMGB1/TLR4/NF-κB通路减少NLRP3炎症小体的活化,提高细胞活力,减少细胞焦亡,减轻MIRI[33]。曲美他嗪和大黄素均通过TLR4/MyD88/NF-κB/NLRP3通路降低炎症小体相关蛋白表达水平,从而抑制细胞焦亡,缓解MIRI[37]。caspase-1是细胞焦亡经典途径中的关键蛋白。caspase-1选择性抑制剂Belnacasan(VX-765)可通过修饰caspase-1活性位点从而阻断其活化,降低循环中IL-1β,减小MIRI大鼠心肌梗死面积[38]。针对细胞焦亡执行者GSDMD的抑制剂——GSDMD选择性抑制剂Y1具有心脏保护作用,GSDMD选择性抑制剂Y1与GSDMD结合,并通过靶向Arg7残基抑制GSDMD-N与质膜内侧的小叶脂质结合,减少膜孔形成,缓解心肌组织损伤[39]。
此外,外泌体作为多功能囊泡,可通过携带转运功能性mRNA或非编码RNA,调节靶细胞的生理功能。在缺/复氧条件下,心脏成纤维细胞分泌外泌体,外泌体将表达水平升高的miR-133a递送至心肌细胞,并与ELAV样RNA结合蛋白1相互作用,下调细胞焦亡标志物的表达水平,减轻MIRI[40]。间充质干细胞来源的外泌体携带miR-320b,通过靶向NLRP3,抑制缺/复氧时心肌细胞中NLRP3的表达,从而减轻细胞焦亡,缓解心肌损伤[41]。
5" 总结和展望
MIRI限制了AMI患者再灌注治疗获益,探究MIRI形成机制是目前急需解决的问题。细胞焦亡可能通过caspase-1介导的经典途径和caspase-4/-5/-11介导的非经典通路促进MIRI,氧化应激、自噬和钙超载等因素触发细胞焦亡,而细胞焦亡引起的炎症级联反应扩大组织损伤,阻断或抑制细胞焦亡的发生可能是提高再灌注疗效的关键突破口。然而,对细胞焦亡在MIRI中所起的作用仍存在争议,Sandanger等[42]发现在小鼠MIRI模型中,NLRP3缺失可导致心肌梗死面积增加,MIRI加重。综上,细胞焦亡在MIRI中的作用和机制仍需进一步研究,以求为细胞焦亡相关蛋白抑制剂的临床转化提供充分的理论依据。此外,以细胞焦亡为靶点的治疗策略仍需临床试验相关数据予以支持。
参考文献
[1]Tsao CW,Aday AW,Almarzooq ZI,et al.Heart disease and stroke statistics—2023 update:a report from the American Heart Association[J].Circulation,2023,147(8):e93-e621.
[2]Samsky MD,Morrow DA,Proudfoot AG,et al.Cardiogenic shock after acute myocardial infarction:a review[J].JAMA,2021,326(18):1840-1850.
[3]Zhang H,Hu H,Zhai C,et al.Cardioprotective strategies after ischemia-reperfusion injury[J].Am J Cardiovasc Drugs,2024,24(1):5-18.
[4]Algoet M,Janssens S,Himmelreich U,et al.Myocardial ischemia-reperfusion injury and the influence of inflammation[J].Trends Cardiovasc Med,2023,33(6):357-366.
[5]Sun B,Wang L,Guo W,et al.New treatment methods for myocardial infarction[J].Front Cardiovasc Med,2023,10:1251669.
[6]Chen M,Li X,Yang H,et al.Hype or hope:vagus nerve stimulation against acute myocardial ischemia-reperfusion injury[J].Trends Cardiovasc Med,2020,30(8):481-488.
[7]Al Mamun A,Wu Y,Monalisa I,et al.Role of pyroptosis in spinal cord injury and its therapeutic implications[J].J Adv Res,2020,28:97-109.
[8]Shi H,Gao Y,Dong Z,et al.GSDMD-mediated cardiomyocyte pyroptosis promotes myocardial I/R injury[J].Circ Res,2021,129(3):383-396.
[9]Paik S,Kim JK,Silwal P,et al.An update on the regulatory mechanisms of NLRP3 inflammasome activation[J].Cell Mol Immunol,2021,18(5):1141-1160.
[10]Lu LQ,Tian J,Luo XJ,et al.Targeting the pathways of regulated necrosis:a potential strategy for alleviation of cardio-cerebrovascular injury[J].Cell Mol Life Sci,2021,78(1):63-78.
[11]Ji N,Qi Z,Wang Y,et al.Pyroptosis:a new regulating mechanism in cardiovascular disease[J].J Inflamm Res,2021,14:2647-2666.
[12]Elias EE,Lyons B,Muruve DA.Gasdermins and pyroptosis in the kidney[J].Nat Rev Nephrol,2023,19(5):337-350.
[13]Barnett KC,Li S,Liang K,et al.A 360°view of the inflammasome:mechanisms of activation,cell death,and diseases[J].Cell,2023,186(11):2288-2312.
[14]Luan F,Rao Z,Peng L,et al.Cinnamic acid preserves against myocardial ischemia/reperfusion injury via suppression of NLRP3/Caspase-1/GSDMD signaling pathway[J].Phytomedicine,2022,100:154047.
[15]Wu J,Cai W,Du R,et al.Sevoflurane alleviates myocardial ischemia reperfusion injury by inhibiting P2X7-NLRP3 mediated pyroptosis[J].Front Mol Biosci,2021,8:768594.
[16]Li H,Yang DH,Zhang Y,et al.Geniposide suppresses NLRP3 inflammasome-mediated pyroptosis via the AMPK signaling pathway to mitigate myocardial ischemia/reperfusion injury[J].Chin Med,2022,17(1):73.
[17]Louwe MC,Olsen MB,Kaasbll OJ,et al.Absence of NLRP3 inflammasome in hematopoietic cells reduces adverse remodeling after experimental myocardial infarction[J].JACC Basic Transl Sci,2020,5(12):1210-1224.
[18]Sun W,Lu H,Dong S,et al.Beclin1 controls caspase-4 inflammsome activation and pyroptosis in mouse myocardial reperfusion-induced microvascular injury[J].Cell Commun Signal,2021,19(1):107.
[19]Li Q,Deng G,Gao Y.S100 calcium-binding protein A12 knockdown ameliorates hypoxia-reoxygenation-induced inflammation and apoptosis in human cardiomyocytes by regulating caspase-4-mediated non-classical pyroptosis[J].Gen Physiol Biophys,2022,41(4):287-297.
[20]Qu Y,Gao R,Wei X,et al.Gasdermin D mediates endoplasmic reticulum stress via FAM134B to regulate cardiomyocyte autophagy and apoptosis in doxorubicin-induced cardiotoxicity[J].Cell Death Dis,2022,13(10):901.
[21]Ye X,Hang Y,Lu Y,et al.CircRNA circ-NNT mediates myocardial ischemia/reperfusion injury through activating pyroptosis by sponging miR-33a-5p and regulating USP46 expression[J].Cell Death Discov,2021,7(1):370.
[22]Han Y,Sun W,Ren D,et al.SIRT1 agonism modulates cardiac NLRP3 inflammasome through pyruvate dehydrogenase during ischemia and reperfusion[J].Redox Biol,2020,34:101538.
[23]Jiang C,Wang Y,Guo M,et al.PCB118 induces inflammation of islet beta cells via activating ROS-NLRP3 inflammasome signaling[J].Biomed Res Int,2021,2021:5522578.
[24]Cheng Y,Cheng L,Gao X,et al.Covalent modification of Keap1 at Cys77 and Cys434 by pubescenoside a suppresses oxidative stress-induced NLRP3 inflammasome activation in myocardial ischemia-reperfusion injury[J].Theranostics,2021,11(2):861-877.
[25]Zhou Y,Li KS,Liu L,et al.MicroRNA-132 promotes oxidative stress-induced pyroptosis by targeting sirtuin 1 in myocardial ischaemia-reperfusion injury[J].Int J Mol Med,2020,45(6):1942-1950.
[26]Yu YW,Liu S,Zhou YY,et al.Shexiang Baoxin Pill attenuates myocardial ischemia/reperfusion injury by activating autophagy via modulating the ceRNA-Map3k8 pathway[J].Phytomedicine,2022,104:154336.
[27]Huang KY,Liu S,Yu YW,et al.3,4-benzopyrene aggravates myocardial ischemia-reperfusion injury-induced pyroptosis through inhibition of autophagy-dependent NLRP3 degradation[J].Ecotoxicol Environ Saf,2023,254:114701.
[28]Jiang K,Xu Y,Wang D,et al.Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis[J].Protein Cell,2022,13(5):336-359.
[29]Mo G,Liu X,Zhong Y,et al.IP3R1 regulates Ca2+ transport and pyroptosis through the NLRP3/caspase-1 pathway in myocardial ischemia/reperfusion injury[J].Cell Death Discov,2021,7(1):31.
[30]Sun W,Lu H,Cui S,et al.NEDD4 ameliorates myocardial reperfusion injury by preventing macrophages pyroptosis[J].Cell Commun Signal,2023,21(1):29.
[31]Wu Y,Zhang Y,Zhang J,et al.Cathelicidin aggravates myocardial ischemia/reperfusion injury via activating TLR4 signaling and P2X7R/NLRP3 inflammasome[J].J Mol Cell Cardiol,2020,139:75-86.
[32]Zhang M,Lei YS,Meng XW,et al.Iguratimod alleviates myocardial ischemia/reperfusion injury through inhibiting inflammatory response induced by cardiac fibroblast pyroptosis via COX2/NLRP3 signaling pathway[J].Front Cell Dev Biol,2021,9:746317.
[33]Ding HS,Huang Y,Qu JF,et al.Panaxynol ameliorates cardiac ischemia/reperfusion injury by suppressing NLRP3-induced pyroptosis and apoptosis via HMGB1/TLR4/NF-κB axis[J].Int Immunopharmacol,2023,121:110222.
[34]Ye X,Zhang P,Zhang Y,et al.GSDMD contributes to myocardial reperfusion injury by regulating pyroptosis[J].Front Immunol,2022,13:893914.
[35]Yanpiset P,Maneechote C,Sriwichaiin S,et al.Gasdermin D-mediated pyroptosis in myocardial ischemia and reperfusion injury:cumulative evidence for future cardioprotective strategies[J].Acta Pharm Sin B,2023,13(1):29-53.
[36]Mastrocola R,Penna C,Tullio F,et al.Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways[J].Oxid Med Cell Longev,2016,2016:5271251.
[37]Chen X,Lin S,Dai S,et al.Trimetazidine affects pyroptosis by targeting GSDMD in myocardial ischemia/reperfusion injury[J].Inflamm Res,2022,71(2):227-241.
[38]Audia JP,Yang XM,Crockett ES,et al.Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y(12) receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function[J].Basic Res Cardiol,2018,113(5):32.
[39]Zhong L,Han J,Fan X,et al.Novel GSDMD inhibitor GI-Y1 protects heart against pyroptosis and ischemia/reperfusion injury by blocking pyroptotic pore formation[J].Basic Res Cardiol,2023,118(1):40.
[40]Liu N,Xie L,Xiao P,et al.Cardiac fibroblasts secrete exosome microRNA to suppress cardiomyocyte pyroptosis in myocardial ischemia/reperfusion injury[J].Mol Cell Biochem,2022,477(4):1249-1260.
[41]Tang J,Jin L,Liu Y,et al.Exosomes derived from mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through inhibiting pyroptosis[J].Drug Des Devel Ther,2020,14:3765-3775.
[42]Sandanger ,Gao E,Ranheim T,et al.NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective[J].Biochem Biophys Res Commun,2016,469(4):1012-1020.
收稿日期:2023-10-18