弱化解决数学问题能力差异的教学策略

2023-12-11 18:27彭其丽
湖北教育·教育教学 2023年12期
关键词:铁丝周长长方形

彭其丽

基于第一学段的学习,三年级学生积累了一定的方法和经验,他们在解决问题时会采取不同的策略,思维发展呈現出较大差异。这些差异在各个知识模块的学习中均有体现,如在解决里程表类、年月日类、时间推算类等作答思路多样化的问题时,学生分析数量关系、寻找解题策略的能力出现两极分化的现象客观存在。

学生解决数学问题的能力两极分化的原因,笔者认为主要有以下两点。一是学生建模思维的发展程度不同。解决问题时,建模思维能力强的学生能够通过画图法、替代法、比较法等分析数量关系,建模思维能力弱的学生则无处下手,甚至胡乱列式计算。二是新课程背景下,数学问题的呈现往往依托真实而又相对复杂的实际背景,如推算时间问题、买票问题、车船安排问题等。学生理解这样的问题需要生活经验的支撑,有经验的学生知道题目中暗含的规则,而没有经验的学生可能无法准确理解题目的意思。

如何尽可能地弱化学生解决数学问题的能力差异?笔者在教学中主要采取以下策略。

一是为基础薄弱的学生查漏补缺。如部分学生在解决问题时不顾数量之间的关系,看到“多”就加,看到“少”就减。笔者教学这类问题(如“淘气有18元钱,比笑笑多5元钱,求笑笑有多少元钱”)时,先引导学生借助数线图表示两个量的关系,再引导学生反复用语言描述数量关系(淘气比笑笑多5元,笑笑比淘气少5元),深入理解题目中“多”与“少”的真正含义。

二是引导学生整理信息,发展建模思维。笔者在课堂教学中做好示范,引导学生用数线图、条形图等记录信息,分析信息,养成建构简单模型的解题习惯,积累建模的经验和方法。如常见的“差倍问题”:A是B的4倍,从A中拿出188给B后,A比B少25,求A、B各是多少?三年级学生没有学习方程,通过画数线图可以直观呈现数量之间的关系(如下图),进而用“(188×2-25)÷3”求出B,再用“B×4”求出A。

三是将数学问题生活化,让学生在实践中感悟知识。例如,学习“长方形的周长”时,如下两类题目学生常常出错。①一根长12分米的铁丝围成了一个长方形,当把这根铁丝围成一个正方形时,求正方形的周长。②周长为36厘米的长方形,它的长和宽分别可以是多少?对于问题①,笔者让学生实际操作,用一根绳子围一围,学生发现12分米的铁丝围成的长方形的周长就是12分米,改成正方形,其周长仍然是12分米。对于问题②,笔者让学生将一根绳子围成一个长方形,测量其长和宽(取整厘米数),讨论这根绳子可以围成几种不同的长方形。学生探究后发现规律,并推知:周长为36厘米的长方形,其长和宽的和是18厘米,把18分成一大一小两个数,大的数就是长,小的数就是宽,有几种分法就有几种长方形。

此外,教师要注重知识之间的关联,处理好教学衔接问题。数学知识具有结构性,对同一个知识模块,不同学段的学生要达到的目标不同。相关联的知识,教师应该教到什么程度?学生要掌握到什么程度?如何与前面所学内容建立联系?如何为后续学习做铺垫?这些问题需要教师依据课程标准要求,细化单元、课时目标,设计具体的学习活动,帮助学生以整体视角理解一个个知识点,形成知识结构。

(作者单位:潜江市田家炳实验小学)

责任编辑  刘佳

猜你喜欢
铁丝周长长方形
我爱长方形
巧求周长
巧求周长
铁丝有多长
铁丝的幽默世界
分类数 不出错
巧替换 妙解答
巧算周长
两长两短
长方形的困惑