刘玮玮,李攀,李浩,赵一风,刘荣臻,2*,李家良
数字光处理技术成形β-磷酸三钙生物陶瓷及其生物学评价
刘玮玮1,李攀1,李浩1,赵一风1,刘荣臻1,2*,李家良3
(1.西安增材制造国家研究院有限公司,西安 710117;2.西安交通大学 材料科学与工程学院,西安 710049;3.西安红会医院,西安 710054)
研究数字光处理技术(Digital Light Processing,DLP)打印β-磷酸三钙(Beta-Tricalcium Phosphaye,β-TCP)生物陶瓷的成形性能与生物学性能。通过表面活性剂硬脂酸改性β-TCP粉体,将改性后的β-TCP粉体与丙烯酸类及甲基丙烯酸类树脂均匀混合成3D打印浆料,进行3D打印性能研究。采用X射线衍射仪(X-Ray Diffraction,XRD)、接触角测量仪、数字式黏度计表征β-TCP粉体、浆料及3D打印支架性能,并进行体外细胞试验研究β-TCP多孔支架的生物学性能。粉体XRD结果显示,硬脂酸改性β-TCP粉体并未影响原始粉体的物相组成;而表面活性剂硬脂酸降低了树脂与粉体表面的接触角,提高了粉体与树脂的亲和性。3D打印β-TCP浆料的固含量为48%(体积分数),在常温下,黏度仅为2.91 Pa·s。支架XRD结果显示,3D打印β-TCP多孔支架的主要物质仍为β-TCP,仅有部分转化为α-TCP。体外细胞试验表明,3D打印β-TCP支架表面可黏附大量细胞,培养7 d后,细胞延伸至支架孔隙内,同时其溶血性结果较钛合金(Ti6Al4V)及聚醚醚酮(PEEK)的优异。3D打印β-TCP多孔支架可作为骨替代植入物,为治疗临床骨缺损疾病提供新途径。
数字光处理;3D打印;β-磷酸三钙;生物陶瓷;生物学性能
β-磷酸三钙(β-Tricalcium Phosphate,β-TCP)陶瓷属于生物活性陶瓷材料,一般表现为在植入体内后,其表面会形成强基碳酸根磷灰石层,与人体骨相连,早在20世纪70年代就被报道并迅速应用于临床[1-2]。传统磷酸钙陶瓷骨植入物的成形方式有干压成形、湿法成形、挤压成形、注射成形、直接凝固成形以及造孔方法(粒子浸出法、气体发泡法、又挤泡沫浸渍法等),这些方法均不能满足临床个性化需求,比如复杂的外形、精准的孔隙连通性和孔隙率等[3-4]。
增材制造(又称3D打印)技术是通过计算机断层扫描获取人体DICOM数据,利用逐层叠加方式构建三维实体的方法,可个性化设计。目前陶瓷材料增材制造技术主要有数字光处理技术(Digital Light Processing,DLP)、立体光固化成形(Stereolithography,SLA)、选择性激光烧结(Selective Laser Sintering,SLS)、双光子聚合(Two Photon Polymerization,TPP)[5-6],其中DLP与SLA具有高速高精度的特点,被广泛应用于陶瓷增材制造[7]。目前大量学者研究了氧化锆与氧化铝等生物陶瓷,但对光固化成形β-TCP的研究较少。目前应用于临床的骨植入物的材料主要为钛合金(Ti6Al4V)及聚醚醚酮(PEEK),3D打印的β-TCP骨植入物在临床中出现较少,有学者质疑3D打印β-TCP骨植入物中残余的树脂成分是否会在动物或人体体内产生排异、致敏情况,甚至出现毒性。因此,本文通过DLP技术成形β-TCP仿骨小梁结构,研究其成形性能,并与Ti6Al4V及PEEK进行生物安全性对比,探讨DLP成形β-TCP骨植入物的生物安全性。
将β-TCP粉体(购自迈海新型材料)与一定比例的表面活性剂硬脂酸(购自上海麦克林)均匀混合,通过湿法球磨进行改性处理,处理方法如下:将230枚氧化锆磨球(5枚12 mm、10枚8 mm、35枚6 mm、180枚4 mm)、60 g粉体、1%(质量分数)硬脂酸和50 mL无水乙醇装入球磨罐中,转速为300 r/min,球磨5 h,将β-TCP与硬脂酸乙醇溶液在70 ℃下烘干,多次称量至恒重,研磨后,过100目筛,获得改性后β-TCP粉体(Modified-β-TCP,M-β-TCP)。
通过X射线衍射仪(X-Ray Diffraction,XRD,型号为帕纳科Empyream)检测改性前后β-TCP粉体的物相组成,检测参数如下:扫描范围为10°~60°、扫描速度为0.2(°)/s。通过接触角测量仪(型号为中仪科信JC2000DM),分别将5 g改性前后的β-TCP粉体制成片状,检测改性前后β-TCP的树脂接触角与水接触角,每个样品任取6个测试点进行测试。
采用丙烯酸与甲基丙烯酸树脂(购自上海光易材料有限公司)作为树脂配方,如表1所示。选择819与651作为光引发剂、BYK110作为分散剂[8],加入一定量的M-β-TCP粉体,通过均质机以1 800 r/min速度搅拌2 min后配制成M-β-TCP浆料。利用自研的下沉式DLP陶瓷打印机(型号为MagicBook F2),在激光电流百分比为45%、曝光时间为5 s条件下打印M-β-TCP多孔骨植入物(软件设计仿骨小梁结构)。
表1 3D打印M-β-TCP浆料树脂配方
通过数字式黏度计(型号为NDJ-8S)表征M-β- TCP浆料的黏度,每个样品取6个黏度数据。通过X射线衍射仪(型号同1.1)检测M-β-TCP支架的物相组成,检测参数同1.1。
通过3D打印技术制备仿骨小梁结构的Ti6Al4V支架与PEEK支架,结构设计同1.2。利用荧光显微镜与SEM观察M-β-TCP支架的细胞黏附性及铺展性。按照ISO 10993-4: 2002标准[9],分别将具有仿骨小梁结构的3D打印M-β-TCP、Ti6Al4V、PEEK支架与小白鼠血红细胞在体外接触,判断所致红细胞溶解和血红蛋白游离程度,对比研究M-β-TCP、Ti6Al4V与PEEK支架的细胞溶血毒性、细胞增殖性等,并对3D打印β-TCP、Ti6Al4V与PEEK支架的细胞碱性磷酸酶(Alkaline Phosphatase,ALP)活性表达进行初步研究,评价3种材料诱导组织再生的意义。
β-TCP改性前后粉末的XRD图谱如图1a所示。可见,β-TCP粉末中主极大衍射峰在2=31.023°附近,次主极大衍射峰在2=34.335°附近,第三主极大衍射峰在2=27.777°附近,与标准PDF卡片010702065#(β-TCP)的主要衍射峰位置一致。改性后β-TCP(M-β-TCP)粉末的衍射锋位置未发生明显改变,说明改性处理不会改变原始粉末的物相组成。经Highscore软件测算可知,β-TCP的结晶度为51.71%,M-β-TCP的结晶度为39.15%。经过球磨后,β-TCP的物相组成未改变,结晶度下降,这主要是由于球磨提供了能量,导致β-TCP的结晶度下降,同时硬脂酸的加入也使粉末出现非晶化。改性前后β-TCP对水与树脂的亲和性如图1b所示。可见,与改性前的β-TCP相比,改性后的M-β-TCP显示出超疏水性,且两者具有极显著性差异,对水的接触角由18°提升到140°以上;改性后M-β-TCP的树脂接触角较改性前的低(由53°降低至37°),出现显著性差异。由改性后M-β-TCP粉末配制的3D打印浆料(固含量为48%,体积分数)在室温下的黏度为2.91 Pa·s,且浆料的黏度随温度的升高而降低(见图2)。由于硬脂酸具有大量疏水基团[10],M-β-TCP粉末表面包覆硬脂酸,使其表面转变为疏水性,且硬脂酸与树脂具有强亲和性,因此M-β-TCP表现出强疏水性、强树脂亲和性,最终获得了高固含量低黏度的3D打印浆料。
DLP成形β-TCP的核心技术是浆料的制备,浆料需既能满足高固含量又能满足低黏度(分散越均匀,在同一黏度下的固含量越高),其中粉体在树脂中的分散性会影响浆料的黏度与固含量[11-12]。粉体在树脂中能否形成分散均匀稳定的体系取决于粉体与粉体间的作用力,当粉体间的斥力大于引力时,体系稳定,当斥力小于引力时,粉体易产生团聚[13-15]。四川大学生物医学工程学院/国家生物医学材料工程技术研究中心张兴栋院士团队与四川大学华西骨科屠重棋教授团队基于DLP技术制备了磷酸钙浆料,其固含量为50%(质量分数),黏度约为3 Pa·s,与本研究相比,黏度接近,但固含量较低[16]。上海交通大学Li等[17]配制了β-TCP与生物玻璃(58S BG)光固化浆料,固含量为34%(体积分数),黏度为85.92 Pa·s,与本研究相比,固含量更低且黏度更高。华中科技大学吴甲民团队配制了双相磷酸钙(Diphase Calcium Phosphate,BCP)与生物玻璃(45S5 BG)光固化浆料,固含量仅为40%(体积分数)[18]。
通过DLP打印的M-β-TCP支架如图3a所示,3D打印M-β-TCP生物陶瓷件烧结后的XRD图谱如图3b所示。对比β-TCP标准PDF卡片(卡片号010702065#)的主要衍射峰位置可知,M-β-TCP支架的主要衍射峰位置与β-TCP标准PDF卡片的位置基本相同,同时观察到α-TCP物质的衍射峰(卡片号090348#),说明经烧结后,M-β-TCP支架的主要物质为β-TCP,有部分转化为高温α-TCP。
图1 改性前后β-TCP粉末的XRD图谱(a)及粉末分别对水、树脂的接触角(b)
图2 不同温度下3D打印M-β-TCP浆料的黏度
3D打印仿骨小梁结构的β-TCP支架与MC3T3- E1细胞共培养7 d后支架表面与内部的荧光显微照片如图4所示。可见,活细胞被Calcein-AM染料染色,支架表面与内部均有一定数量的细胞黏附,铺展状态良好,细胞伪足明显(圆圈所示)。3D打印仿骨小梁结构的M-β-TCP支架与MC3T3-E1细胞共培养7 d后的SEM图如图5所示。SEM显示,β-TCP支架表面细胞呈梭形,伪足与支架表面紧密黏附(箭头所示),由图5b可以看到,细胞间伪足互相连接。与荧光显微照片现象结合可知,通过3D打印构建的M-β-TCP支架表现出良好的细胞黏附与细胞相容性。
溶血性试验主要是观察样品是否会引起溶血和红细胞凝聚等反应,某些材料因含有杂质成分,注入血管后易产生红细胞凝聚,引起血液循环功能障碍等一系列不良反应,另外,因材料成分复杂,也会存在因免疫反应而引起免疫性溶血现象,溶血可导致某些器官形成血栓,进而受损[19-20]。因此,凡可能引起免疫性溶血或非免疫性溶血反应的材料均应进行溶血性试验,通常材料的溶血率越低,表明该材料的安全性越高[21]。3D打印M-β-TCP、Ti6Al4V与PEEK支架的细胞溶血反应前后的现象及溶血毒性反应数据结果如图6所示。可见,M-β-TCP、Ti6Al4V与PEEK材料均未出现明显的溶血毒性。M-β-TCP对血细胞的溶血率为(0.73±0.024)%,与Ti6Al4V(1.24%±0.030%)和PEEK(0.93%±0.012%)有显著性差异,因此,3D打印M-β-TCP不会引起血红细胞凝聚进而产生血液循环功能障碍的现象。
图3 3D打印M-β-TCP生坯件(a)及烧结后的XRD图谱(b)
图4 3D打印仿骨小梁结构的M-β-TCP支架与小鼠颅骨前成骨细胞(MC3T3-E1)细胞共培养7 d后支架表面(a)与内部(b)的荧光显微照片
图6 3D打印M-β-TCP、Ti6Al4V与PEEK支架对兔血红细胞的溶血反应与阴阳性对照图及溶血毒性反应数据结果
ALP是早期成骨分化的标志,通过检测ALP活性,可反映不同材料对细胞成骨分化的影响[22-23]。3D打印M-β-TCP、Ti6Al4V、PEEK支架与小鼠颅骨前成骨细胞(MC3T3-E1)共培养的细胞增殖情况与碱性磷酸酶(ALP)活性如图7所示。细胞增殖结果显示,与PEEK和Ti6Al4V支架相比,M-β-TCP的细胞OD值存在显著性差异,说明M-β-TCP较Ti6Al4V和PEEK的细胞相容性更佳,也更有利于促进细胞增殖。ALP活性结果显示,在2周时3种材料的ALP分泌均呈现高值,而共培养3周时ALP活性表达相较于2周时的有所降低,这可能是因为在成骨初期,3种材料均可加速促进成骨细胞分化,而后期逐渐减缓。在共培养2周时,M-β-TCP的ALP活性表达与PEEK出现显著性差异,其余组均无显著性差异,表明3种材料在短期内的成骨性相似。β-TCP材料的主要成分为钙和磷,与人体主要无机成分相同[24],在临床上作为骨植入物更加适用,而Ti6Al4V的弹性模量高于皮质骨的,易造成周围骨组织吸收,骨强度降低,产生应力遮挡[25],PEEK为生物惰性材料,植入物周围易形成纤维组织包裹且骨整合能力较弱[26]。综上所述,β-TCP材料较Ti6Al4V、PEEK更适宜作为骨植入替代物。
图7 3D打印M-β-TCP、Ti6Al4V与PEEK支架与小鼠颅骨前成骨细胞(MC3T3-E1)共培养的细胞增殖情况(a)与碱性磷酸酶(ALP)活性(b)
1)通过硬脂酸改性β-TCP粉体不会影响其原粉体的物相组成,仅表现为结晶度下降,β-TCP的结晶度为51.71%,M-β-TCP的结晶度为39.15%。球磨使表面活性剂硬脂酸均匀包裹于β-TCP粉体表面,从而增加了β-TCP粉体与树脂的亲和性,获得高固含量(48%,体积分数)低黏度(常温下为2.91 Pa·s)的3D打印浆料。
2)经过脱脂烧结后,通过DLP成形的M-β-TCP支架的物相组成主要为β-TCP,仅有部分转换为α-TCP。
3)体外细胞试验表明,经烧结后,DLP成形M-β-TCP支架无细胞毒性,且与目前临床常用植入材料Ti6Al4V与PEEK对比得出,M-β-TCP的细胞溶血性及细胞增殖情况均优于Ti6Al4V与PEEK。
本研究通过改性β-TCP粉末,配制出高固低黏的3D打印浆料,且进行了体外细胞试验验证,为增材制造β-TCP骨支架在临床上的应用提供了基础理论。
[1] FUKUDA N, ISHIKAWA K, AKITA K, et al. Effects of Acidic Calcium Phosphate Concentration on Setting Reaction and Tissue Response to β-Tricalcium Phosphate Granular Cement[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2019, 108(1): 22-29.
[2] TANAKA T, CHAZONO M, KOMAKI H. Clinical Application of Beta-Tricalcium Phosphate in Human Bone Defects[J]. Jikeikai Medical Journal, 2006, 53(1): 45-53.
[3] KIM Y, UYAMA E, SEKINE K, et al. Effects of Poloxamer Additives on Strength, Injectability, and Shape Stability of Beta-Tricalcium Phosphate Cement Modified Using Ball-milling[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130: 105182.
[4] WEI L J, SHARIFF K A, MOMIN S A, et al. Self-Setting β-Tricalcium Phosphate Granular Cement at Physiological Body Condition: Effect of Citric Acid Concentration as an Inhibitor[J]. Journal of the Australian Ceramic Society, 2021, 57(3): 687-696.
[5] GROSSIN D, ALEJANDRO M, NAVARRETE-SEGADO P, et al. A Review of Additive Manufacturing of Ceramics by Powder Bed Selective Laser Processing (Sintering/Melting): Calcium Phosphate, Silicon Carbide, Zirconia, Alumina, and Their Composites[J]. Open Ceramics, 2021, 5: 100073.
[6] LEE H E. Improving Mechanical Properties of Porous Calcium Phosphate Scaffolds by Constructing Elongated Gyroid Structures Using Digital Light Processing[J]. Ceramics International, 2021, 47(3): 3252-3258.
[7] ZHANG F, YANG J, ZUO Y, et al. Digital Light Processing of β-Tricalcium Phosphate Bioceramic Scaffolds with Controllable Porous Structures for Patient Specific Craniomaxillofacial Bone Reconstruction[J]. Materials & Design, 2022, 216: 110558.
[8] 刘玮玮. 应用于3D打印的光固化陶瓷浆料、制备方法及3D打印方法: 中国, CN113024243B[P]. 2023- 06-20.
LIU Wei-wei. Light-curing Ceramic Paste, Preparation Method and 3D Printing Method Applied to 3D Printing: China, CN113024243B[P]. 2023-06-20.
[9] ISO 10993-4: 2002. Biological Evaluation of Medical Devices-Part4: Selection of Tests for Interactions with Blood[S].
[10] PATTI A, LECOCQ H, SERGHEI A, et al. The Universal Usefulness of Stearic Acid as Surface Modifier: Applications to the Polymer Formulations and Composite Processing[J]. Journal of Industrial and Engineering Chemistry, 2021, 96(1): 1-33.
[11] FERNANDES J G, BARCELONA P, BLANES M, et al. Study of Mixing Process of Low Temperature Co-Fired Ceramics Photocurable Suspension for Digital Light Processing Stereolithography[J]. Ceramics International, 2021, 47(11): 15931-15938.
[12] SUN J, BINNER J, BAI J. 3D Printing of Zirconia via Digital Light Processing: Optimization of the Slurry and Debinding Process[J]. Journal of the European Ceramic Society, 2020, 40(15): 5837-5844.
[13] IIJIMA M. Surface Modification Techniques Toward Controlling the Dispersion Stability and Particle-Assembled Structures of Slurries[J]. Journal of the Ceramic Society of Japan, 2017, 125(8): 603-607.
[14] WANG C L, ZHANG J Y, LEI L W. Effect of Particle Size on Silicon Nitride Ceramic Slurry by Stereolithography[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2023, 38(3): 514-519.
[15] WEI Y N, Liu Y X. Study of Dispersion Mechanisms of Modified SiC Powder: Electrostatic Repulsion and Steric Hindrance Mechanism[J]. New Journal of Chemistry, 2019, 43(35): 14036-14044.
[16] WANG J, TANG Y, CAO Q, et al. Fabrication and Biological Evaluation of 3D-Printed Calcium Phosphate Ceramic Scaffolds with Distinct Macroporous Geometries Through Digital Light Processing Technology[J]. Regenerative Biomaterials, 2022, 9(1): 15.
[17] LI X, ZHANG H, SHEN Y, et al. Fabrication of Porous Beta-TCP/58S Bioglass Scaffolds via top-down DLP Printing with High Solid Loading Ceramic-Resin Slurry[J]. Materials Chemistry and Physics, 2021, 267: 124587.
[18] HUA S B, SU J, DENG Z L, et al. Microstructures and Properties of 45S5 Bioglass & BCP Bioceramic Scaffolds Fabricated by Digital Light Processing[J]. Additive Manufacturing, 2021, 45: 102074.
[19] SUN J, GU G, QIAN Y. Influence of Different Contact Ways and Extracting Conditions on the Hemolytic Effect of Biomaterials[J]. Journal of Biomedical Engineering, 2003, 20(1): 8.
[20] MEHRIZI T Z. Hemocompatibility and Hemolytic Effects of Functionalized Nanoparticles on Red Blood Cells: A Recent Review Study[J]. Nano Brief Reports and Reviews, 2021, 16(8): 2130007.
[21] ZORICA R A, MIHAJLOV-KRSTEV T, NENAD L I, et al. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties[J]. Journal of Nanoscience & Nanotechnology, 2016, 16(2): 1420.
[22] MÜLLER V, DJURADO E. Microstructural Designed S58 Bioactive Glass/Hydroxyapatite Composites for Enhancing Osteointegration of Ti6Al4V-Based Implants[J]. Ceramics International, 2022, 48(23 Part A): 35365-35375.
[23] VIMALRAJ S. Alkaline Phosphatase: Structure, Expression and Its Function in Bone Mineralization- ScienceDirect[J]. Gene, 2020, 754: 144855.
[24] WANG J, LIU C S. Calcium Phosphate Composite Cement[J]. Developments and Applications of Calcium Phosphate Bone Cements, 2018, 9: 187-226.
[25] HEARY R F, PARVATHREDDY N, SAMPATH S, et al. Elastic Modulus in the Selection of Interbody Implants[J]. Journal of Spine Surgery (Hong Kong), 2017, 3(2): 163-167.
[26] HE M, HUANG Y, XU H, et al. Modification of Polyetheretherketone Implants: From Enhancing Bone Integration to Enabling Multi-Modal Therapeutics[J]. Acta Biomaterialia, 2021, 129(6): 18-32.
Fabrication of β-tricalcium Phosphate Bioceramics by Digital Light Processing Technique and Its Biological Evaluation
LIU Wei-wei1, LI Pan1, LI Hao1, ZHAO Yi-feng1, LIU Rong-zhen1,2*, LI Jia-liang3
(1. Xi’an Additive Manufacturing National Institute Co., Ltd., Xi’an 710117, China; 2. School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 3. Xi’an Honghui Hospital, Xi’an 710054, China)
The work aims to study the formability and biological properties of β-Tricalcium Phosphate (β-TCP) bioceramics printed by digital light processing (DLP) technique. β-TCP powder modified by surfactant stearic acid was evenly mixed with acrylic resins and methacrylic resin to form 3D printed slurry, and then the 3D printed process was verified. An X-ray diffractometer (XRD), a contact Angle measuring instrument, and a digital viscometer were used to characterize the properties of β-TCP powder, slurry and 3D printed scaffolds. The biological properties of β-TCP porous scaffolds were studied by cell and animal experiments. The powder XRD results showed that the modification of β-TCP powder did not affect the phase composition of the powder. The surfactant stearic acid reduced the contact angle between the resin and the powder surface, and improved the affinity between the powder and the resin. The solid content of 3D printed β-TCP slurry was 48vol.% and the viscosity was only 2.91 Pa·s at room temperature. The scaffold XRD results showed that the main substance of sintered scaffold was β-TCP, and part of it was transformed into α-TCP. In vitro cell experiments showed that the surface of 3D printed β-TCP scaffolds could adhere to a large number of cells. After 7 days of culture, the cells extended into the pores of the scaffold. And the hemolytic results were better than those of Ti6Al4V and PEEK. 3D printed β-TCP porous scaffolds can be used as bone replacement implants, providing a new way to treat clinical bone defect diseases.
digital light processing; 3D printed; β-tricalcium phosphate; bioceramics; biological properties
10.3969/j.issn.1674-6457.2023.011.008
TH145.9;TB321
A
1674-6457(2023)011-0069-07
2023-10-07
2023-10-07
陕西省重点研发计划重点产业创新链项目(2017KTZD6-01);陕西省科技统筹创新工程计划(2016KTZDGY4-06)
Shaanxi Province Key R&D Programme Key Industrial Innovation Chain Project (2017KTZD6-01); Shaanxi Province Science and Technology Coordination and Innovation Engineering Programme (2016KTZDGY4-06)
刘玮玮, 李攀, 李浩, 等. 数字光处理技术成形β-磷酸三钙生物陶瓷及其生物学评价[J]. 精密成形工程, 2023, 15(11): 69-75.
LIU Wei-wei, LI Pan, LI Hao, et al. Fabrication of β-tricalcium Phosphate Bioceramics by Digital Light Processing Technique and Its Biological Evaluation[J]. Journal of Netshape Forming Engineering, 2023, 15(11): 69-75.
通信作者(Corresponding author)
责任编辑:蒋红晨