麻志旺, 郭 锋
云开地体印支期构造转折——来自阳春二云母花岗岩的地球化学制约
麻志旺1, 2, 郭 锋1, 3*
(1. 中国科学院 广州地球化学研究所, 同位素地球化学国家重点实验室, 广东 广州 510640; 2. 中国科学院大学, 北京 100049; 3. 中国科学院深地科学卓越创新中心, 广东 广州 510640)
云开地体位于古特提斯构造域、古太平洋构造域的交接部位, 是研究华南印支期花岗岩构造背景的关键窗口。本文在总结前人资料的基础上, 选择云开地体阳春二云母花岗岩开展了年代学与岩石地球化学研究。锆石U-Pb定年结果给出两组谐和年龄: 一组为426.4±1.7 Ma(MSWD=2.4,=8)志留纪末, 属加里东期; 另一组为239.1±1.7 Ma(MSWD=1.2,=4)中三叠世, 属印支期。独居石U-Pb定年结果为239.0±0.3 Ma(MSWD=1.2,=31), 与第二组锆石U-Pb年龄一致, 指示该岩体形成于中三叠世。阳春二云母花岗岩总体显示出S型花岗岩或过铝质花岗岩的特点, 微量元素富集大离子亲石元素、亏损高场强元素, 稀土元素配分模式相对平坦, 具有明显的Eu负异常, 全岩锆饱和温度低(725~747 ℃)。在同位素组成上, 其全岩Nd()(−10.8~−9.4)、锆石Hf()( −13.2~−7.8)和独居石Nd()(−10.9~−8.4)三者之间相互吻合, 并具有相似的亏损模式年龄(全岩DM2(Nd)为1.8~1.9 Ga、锆石DM2(Hf)为1.8~2.1 Ga、独居石DM2(Nd)为1.7~1.9 Ga), 表明岩浆起源于古老再循环地壳物质的重熔, 并经历了以斜长石和独居石为主的分离结晶作用。结合区域构造演化历史, 我们认为阳春二云母花岗岩形成于从大洋俯冲到造山带垮塌的转折阶段: 晚二叠世海相沉积和I型花岗岩反映了古特提斯洋俯冲作用; 早‒中三叠世区域地壳发生强烈缩短加厚并诱发了深熔作用形成S型花岗岩, 代表了同造山阶段; 晚三叠世A2型花岗岩浆作用和陆相红层沉积指示造山带垮塌阶段。
构造转折; 岩石地球化学; 二云母花岗岩; 印支期; 云开地体
花岗岩是大陆地壳的重要组成部分, 是地球区别于太阳系其他行星的重要标志。花岗岩的成因研究有助于我们理解地壳生长和改造、壳幔相互作用等地球深部过程(徐夕生, 2008)。部分花岗岩可以指示特定构造环境, 例如A型花岗岩一般含有碱性暗色矿物, 是板内裂谷、地幔柱、后造山等伸展构造环境的重要标志(Bonin, 2007); 斜长花岗岩主要由斜长石和石英组成、几乎不含暗色矿物, 是蛇绿岩的重要组成部分, 代表大洋玄武岩高度分异的产物(Grimes et al., 2013); I型与A型花岗岩共生则通常出现在大洋俯冲后撤阶段(Zhao et al., 2016)。花岗岩的矿物组合和地球化学指标还可以反映源区的--H2O条件。例如含水矿物黑云母、角闪石的成分, 以及Rb、Sr、Ba等LILEs元素可以反映源区水含量(Inger and Harris, 1993; Bachmann and Bergantz, 2008); 全岩锆饱和温度可以估算最大的岩浆结晶温度(Watson and Harrison, 1983; Miller et al., 2003)。花岗岩中有时可见源区熔融残留的包体, 是研究源区熔融过程的直接窗口(Cesare, 2000; Acosta-Vigil et al., 2010, 2012)。
厘定花岗质岩浆准确的活动时间和持续时间是地球科学研究的挑战之一(Williams et al., 2007)。由于不同测年手段(如LA-ICP-MS、SHRIMP、SIMS、独居石EMPA定年等)分析精度不同, 导致对同一岩体获得的年龄数据存在差异, 阻碍了我们对岩浆事件发生准确时间的厘定。例如在过铝质花岗岩中, 岩浆成因锆石和继承锆石往往记录了多组206Pb/238U谐和年龄, 很难确定岩体的形成年龄。独居石是过铝质花岗岩中的常见副矿物, Th、U含量高, 普通Pb含量低(Cherniak et al., 2004; Fisher et al., 2020), 其封闭温度低, 且几乎没有继承独居石的特性(Piechocka et al., 2017), 是开展过铝质花岗岩定年的理想矿物。因此, 联合展开独居石和锆石U-Pb定年可以准确厘定过铝质花岗岩的形成时间, 结合锆石原位Hf同位素和独居石原位Nd同位素组成, 可以很好地揭示花岗岩成因。
华南陆块发育了大面积印支期花岗岩, 花岗岩的形成是否受到古特提斯洋演化的直接影响, 一直存在不同观点。晚二叠世‒三叠纪期间, 华南陆块西边是古特提斯构造域, 东边是泛大洋构造域, 受到了两大构造体系的共同影响(Matthews et al., 2016; Huang et al., 2018)。陆内造山模式认为东南亚一系列地块的拼合形成东南、西北两个远场应力, 控制了华南大面积S型花岗岩、区域性大型不对称褶皱和逆冲断层的形成(Wang et al., 2007a; Shu et al., 2015)。古特提洋俯冲模式认为三江造山带是古特提斯洋东段主干、松马缝合带作为古特提斯东段的分支, 晚二叠世古特提斯洋东段闭合一直影响着华南陆块的印支运动(Zhao and Cawood, 2012; Faure et al., 2014)。古太平洋俯冲模式认为二叠纪古太平洋平板俯冲、侏罗纪俯冲大洋板块后撤形成了华南1300 km二叠纪‒侏罗纪花岗岩带以及大面积褶皱冲断带(Li and Li, 2007; Li et al., 2012)。
古地理资料显示, 印支期云开地体处于古特提斯构造域和古太平洋构造域叠加交汇的特殊地段(Huang et al., 2018)。云开地体印支期花岗岩的成因研究对于揭示华南大面积花岗岩的构造背景具有重要的指示意义。为此, 本文在总结前人研究的基础上, 选择云开地体阳春地区花岗岩开展年代学和岩石地球化学研究。具体工作包括: ①系统收集了云开地体印支期花岗岩的年龄、岩石类型与组合, 构建了区域花岗质岩浆活动的年代学框架, 揭示了不同岩石类型的空间展布特征; ②开展锆石、独居石的LA-ICP-MS U-Pb定年工作, 精确厘定了阳春二云母花岗岩的形成年龄; ③开展了全岩主量、微量元素及Sr-Nd同位素、锆石Lu-Hf同位素和独居石Sm-Nd同位素研究, 以查明花岗岩源区属性和熔融机制, 及其与区域大地构造演化之间的联系。
华南陆块由西北部的扬子地块、东南部的华夏地块在新元古代期间沿江南造山带拼合而成(Zhang et al., 2013)。江南造山带东北段江‒绍断裂带出露较好, 西南段出露较差, 存在郴州‒临武断裂带(Wang et al., 2003)、萍乡‒茶陵断裂(Zhao and Cawood, 2012)、石坪‒罗甸断裂带(Guo et al., 2009)之争。扬子地块基底是太古宙(崆岭杂岩)‒古元古代结晶基底, 基底岩石周围是中元古代、新元古代褶皱带, 其上被弱变形新元古代、未变形震旦纪地层角度不整合覆盖。华夏地块目前未见太古宙岩石出露, 但在一些变质杂岩和沉积岩中存在大量太古宙继承锆石, 主要基底是古元古代和中元古代岩石, 出露于武夷山、云开大山、南岭、海南、陈蔡等地区。
云开地体位于华夏地块西南部, 东临吴川‒四会断裂, 西接梧州‒博白断裂, 是一个NE向延伸的菱形地块, 长约300 km、宽150 km(图1)。云开地体基底是前寒武纪变质岩, 具有双层结构, 深部由经历了角闪岩相‒麻粒岩相变质的信宜‒高州杂岩组成, 浅部岩性包括云母片岩、变质火山岩、弱变质沉积岩(周汉文等, 1996; 钟增球等, 1996)。寒武系‒奥陶系为海相硅质岩、泥页岩、碎屑岩沉积, 泥盆系‒二叠系为连续海相沉积, 华南陆块整体缺失志留系、指示加里东期褶皱造山运动, 而钦州是华南陆块唯一出露志留系的地区。上三叠统‒白垩系为陆相沉积红色砂岩, 缺失中下三叠统, 指示印支期褶皱造山运动(Wang et al., 2007a; Hu et al., 2014)。
云开地体广泛发育岩浆和变质作用。加里东期混合岩、麻粒岩、片麻状花岗岩构成其核部椭圆状穹窿构造, 反映同碰撞的角闪岩相甚至麻粒岩相高温变质作用(Wang et al., 2007b, 2011)。印支期造山带是对加里东期造山带的继承和改造, 核部是混合岩、深熔花岗岩, NE向剪切带糜棱岩同样经历了角闪岩相‒绿片岩相变质, 反映平行造山带的高温塑性流动(Lin et al., 2008; Cochelin et al., 2022)。印支期和燕山期花岗岩主要出露于十万大山、六万大山地区, 少量出露于云开地体核部。印支期花岗岩以S型花岗岩为主, 存在少量I型和A2型花岗岩(Qiu et al., 2016; Gan et al., 2021)。
本次研究的5件样品采集于阳春市大八镇(22º9′3.96″N, 111º57′11.52″E), 岩性为中细粒二云母花岗岩, 具有典型的花岗结构和块状构造, 未见变形变质作用。主要矿物为石英(40%~50%)、斜长石(15%~20%)、钾长石(10%~15%)、白云母(10%~12%)和黑云母(2%~4%),含有少量锆石、磷灰石、独居石等副矿物(<1%), 属于S型花岗岩。石英呈它形粒状, 粒径约1 mm。斜长石呈板状、柱状, 发育聚片双晶, 粒径通常变化在0.5~0.8 mm之间。钾长石呈板状、柱状, 常发育格子双晶, 粒径为0.5~0.8 mm。白云母呈板状、片状, 发育一组极完全解理, 粒径在0.5~0.8 mm之间。黑云母呈板状、片状, 棕褐色‒黄褐色, 具有明显的多色性, 粒径为0.3~0.5 mm。独居石呈板状、楔状, 亮黄色, 突起高、糙面明显, 粒径变化在50~100mm之间(图2)。
(a) 二云母花岗岩野外露头; (b、c) 二云母花岗岩的矿物组合; (d) 二云母花岗岩手标本; (e、f) 独居石显微照片。矿物代号: Pl. 斜长石; Kfs. 钾长石; Bt. 黑云母; Mus. 白云母; Qz. 石英; Mnz. 独居石。
从二云母花岗岩样品MZW53中挑选锆石和独居石单矿物, 用于年代学分析, 其他4件样品开展全岩地球化学分析。
锆石U-Pb、Lu-Hf同位素测试在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。U-Pb同位素测试仪器为激光剥蚀系统193-nm (ArF) Resonetics RESOlution M-50和等离子质谱仪ELEMENT XR(Thermo Fisher Scientific) ICP-SF-MS, 激光束斑直径33mm, 频率5 Hz, 能量密度4 J/cm2。Lu-Hf同位素测试采用的设备为193-nm(ArF) Resonetics RESOlution M-50激光剥蚀系统和多接收电感耦合等离子质谱仪(MC-ICP-MS), 激光束斑直径45mm, 频率6 Hz, 能量密度4 J/cm2。数据处理采用GLITTER程序。
独居石原位U-Pb、Sm-Nd同位素测试在武汉上谱分析科技有限责任公司完成。U-Pb同位素测试设备为相干193 nm准分子激光剥蚀系统GeoLas HD、安捷伦Agilent 7900型电感耦合等离子体质谱仪(ICP-MS), 激光束斑直径16mm, 频率2 Hz, 能量密度80 J/cm2。Sm-Nd同位素测试设备为Neptune Plus型MC-ICP-MS、相干193 nm准分子激光剥蚀系统(GeoLas HD), 激光束斑直径24mm, 频率2 Hz, 能量密度10 J/cm2。数据处理采用ICP-MS-DATACAL 10程序。
全岩主量、微量元素和Sr-Nd同位素测试在贵州同微测试科技有限公司完成。主量元素测试采用荧光熔片法, 仪器为X射线荧光光谱仪(XRF), 分析误差<2%。微量元素采用HF+HNO3密封溶解, 以Rh、In、Re、Bi作为内标, 测试仪器为Thermo Fisher X2型ICP-MS, 稀土元素和高场强元素分析误差<5%,其余元素分析误差为5%~10%。Sr-Nd同位素采用阳离子树脂法分离, 测试仪器为Nu Plasma 3型MC-ICP-MS, 全流程使用的标样有USGS W-2a、BHVO-2、BCR-2。
选择透明、无裂缝、无包裹体的锆石边部环带进行测试(图3a), 共获得了两组206Pb/238U谐和年龄: 一组为426.4±1.7 Ma(MSWD=2.4,=8), 为志留纪末期, 属加里东期; 另一组为239.1±1.7 Ma(MSWD=1.2,=4), 为中三叠世, 属印支期(图4a)。加里东期锆石粒径为100~150mm, 柱状, 具有岩浆振荡环带结构, Th、U含量分别为58.8×10–6~499×10–6、213×10–6~1256×10–6, Th/U值为0.11~0.96(表1), 具有岩浆成因锆石的特点; 印支期锆石粒径为100~150mm, 柱状, 具有岩浆振荡环带结构, Th、U含量分别为32.8×10–6~370×10–6、190×10–6~951×10–6, Th/U值为0.17~0.82(表1), 与加里东期锆石具有相似的轻稀土元素亏损、重稀土元素富集的稀土元素配分模式、Ce正异常和Eu负异常(图4c, 附表1, 详见网络电子版)。
图3 锆石(a)和独居石(b)的CL图像
球粒陨石标准化值据Sun and McDonough (1989)。
表1 阳春二云母花岗岩(MZW53)中锆石U-Pb年代学分析结果
独居石在阳春二云母花岗岩中以包裹体形式出现于石英、长石、云母等造岩矿物中, EPMA测得氧化物总量为98.48%~101.09%, 其中P2O5=27.11%~39.01%, ThO2=0.18%~9.97%, UO2=0.03%~2.70%, La2O3=10.58%~ 19.61%, Ce2O3=23.76%~33.71%, Pr2O3=2.23%~2.97%, Nd2O3=9.39%~12.90%(表2)。选择无裂缝、无包裹体的核部进行定年测试(图3b), 获得一组206Pb/238U谐和年龄为239.0±0.3 Ma(MSWD=1.2,=31)。独居石的粒径变化在80~100mm之间, Th、U含量分别为36948×10–6~97233×10–6、2689×10–6~37789×10–6, Th/U值为1.55~22.9(表3), 并具有轻稀土元素富集、重稀土元素亏损的配分模式和强烈的Eu负异常(图4d, 附表2, 详见网络电子版), 属于岩浆成因(邱昆峰和杨立强, 2011; 梁晓等, 2021)。
表3 阳春二云母花岗岩(MZW53)中独居石U-Pb年代学分析结果
印支期锆石的176Lu/177Hf值为0.000645~ 0.003161,176Hf/177Hf值为0.282254~0.282416,Hf()值为−13.2~−7.8, Hf同位素二阶段亏损模式年龄DM2(Hf)为1.8~2.1 Ga; 加里东期锆石176Lu/177Hf值为0.001109~0.004078,176Hf/177Hf值为0.282178~ 0.282376,Hf()值为−12.1~−5.3,DM2(Hf)为1.7~2.2 Ga (表4)。印支期锆石和加里东期锆石之间具有明显的相似性和同源性。三叠纪独居石的143Nd/144Nd值为0.512017~0.512111,147Sm/144Nd值为0.1221~0.1642,Nd()值为−10.9~−8.4之间, Nd同位素二阶段亏损模式年DM2(Nd)为1.7~1.9 Ga(表5)。
表4 阳春二云母花岗岩(MZW53)中锆石Hf同位素组成
表5 阳春二云母花岗岩(MZW53)中独居石Nd同位素组成
注: *为参与计算的点。
本次测试的4件阳春二云母花岗岩样品的SiO2含量为72.61%~73.73%, Al2O3含量为14.34%~15.57%, 富K2O(5.10%~6.50%),低CaO(0.02%~0.19%)和P2O5(0.07%~0.15%), 铝饱和指数A/CNK为1.27~2.16, 为强过铝质高钾钙碱性花岗岩(图5; 附表3, 详见网络电子版)。
数据来源: 晚二叠世S型花岗岩据Li et al., 2016; Qing et al., 2020a; 三叠纪S型花岗岩据周岱等, 2021b。
在球粒陨石标准化稀土元素配分模式图(图6a)上, 阳春二云母花岗岩弱富集轻稀土元素(La/Yb)N= 1.81~2.73, Eu负异常明显(Eu/Eu*=0.33~0.41)。与云开地体其余印支期S型花岗岩(包括二叠纪和三叠纪花岗岩)相比, 阳春二云母花岗岩的LREE含量最低、REE配分模式较平坦。在原始地幔标准化微量元素蛛网图中(图6b), 阳春二云母花岗岩与区域相关印S型花岗岩均富集钙碱性金属元素(Rb、K、Th、U、Pb), 亏损碱性稀土元素(Ba、Sr)和HFSE(Nb、Ta、P、Ti)。
图6 阳春二云母花岗岩球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)(数据来源同图5)
阳春二云母花岗岩2件样品的初始(87Sr/86Sr)i为0.713069~0.713892。4件样品的全岩Nd()为−10.8~−9.4,DM2(Nd)为1.8~1.9 Ga(表6), 与锆石Hf模式年龄(1.8~2.1 Ga)、独居石Nd模式年龄(1.7~ 1.9 Ga)基本一致。
表6 云开地体及邻区晚古生代‒早中生代S型花岗岩Sr-Nd同位素组成
阳春二云母花岗岩中锆石获得两组谐和年龄为426.4±1.7 Ma和239.1±1.7 Ma。独居石仅存在一组谐和年龄为239.0±0.3 Ma, 与获得的印支期锆石年龄一致。阳春二云母花岗岩全岩锆饱和温度低(725~747 ℃; 附表3), 三叠纪锆石不具有异常高的176Lu/177Hf值, 说明三叠纪花岗岩浆活动并非选择性熔融事件, 而是由于熔融温度较低、并未达到源区中锆石大量熔融的温度(Lee et al., 1997), 致使源区有大量的继承锆石残留, 并被卷入到岩浆中。这种低温熔融现象类似于喜马拉雅淡色花岗岩, 新生锆石少量发育, 而岩浆型独居石、磷钇矿大量发育(吴福元等, 2015; Wu et al., 2020)。因此, 239.0 Ma代表了阳春二云母花岗岩的形成年龄。
云开地体印支期花岗岩的侵位持续时间一直存在较大争议。祁昌实等(2007)首次报道十万大山地区花岗岩锆石SHRIMP U-Pb年龄为230 Ma。赵亮等(2010)通过LA-ICP-MS锆石U-Pb测年获得十万大山地区花岗岩麻粒岩包体253 Ma变质年龄和234 Ma岩浆年龄。Chen et al. (2011, 2012, 2017)对云开地体大量花岗岩和变质岩开展了EMP独居石年龄分析, 获得了大量230 Ma左右的岩浆和变质作用年龄。Jiao et al. (2015)通过离子探针分析获得了十万大山地区S型花岗岩的锆石U-Pb年龄在247 Ma左右。不同测年手段存在精度差异, 导致对同一岩体获得的年龄数据存在差异, 限制了我们对岩浆事件发生真实时间的认识。近年来的研究结果显示, 云开地体不仅存在晚二叠世S型花岗岩(Li et al., 2016; Qing et al., 2020a)、同时也有中‒晚三叠世S型花岗岩(周岱等, 2021b; Gan et al., 2021)。根据前人和本次的研究结果, 我们认为云开地体印支期可能存在晚二叠世、中‒晚三叠世两期花岗质岩浆活动(图7), 与 Cochelin et al. (2022)对区域岩浆和变质活动统计得出的结论相似。其中‒晚二叠世以S型和I型花岗岩组合为特征, 而晚三叠世为S型和A2型花岗岩组合。
数据来源: 邓希光等, 2004; 祁昌实等, 2007; 赵亮等, 2010; 覃小峰等, 2011; Chen et al., 2011, 2012, 2017; 张怀峰等, 2013; 娄峰等, 2014; Jiao et al., 2015; Qiu et al., 2016; Li et al., 2016; Song et al., 2017; 倪战旭等, 2019; 李政林等, 2019; 焦骞骞等, 2020; Qing et al., 2020a, 2020b; 周岱等, 2021b; 田梦宇等, 2021; Gan et al., 2021。
云开地体印支期花岗岩出露面积远大于镁铁质火成岩, 因此花岗岩不可能由镁铁质岩浆结晶分异形成。同时花岗岩中缺乏镁铁质包体, 也不支持幔源岩浆混合成因。阳春二云母花岗岩全岩Nd()值(−10.8~−9.4)与独居石Nd()值(−10.9~−8.4)以及锆石Hf()值(−13.2~−7.8)之间相互耦合印证, 说明岩浆演化处于相对封闭环境。独居石在源区残留或大量结晶分异都会产生贫LREE的花岗岩(Zeng et al., 2005)。阳春二云母花岗岩中独居石都具有岩浆成因的矿物学与地球化学特征, REE配分模式相似(图4d), 不支持独居石大量残留在源区。少量独居石结晶分异就会消耗岩浆中大量的LREE, 并导致熔体Ce/Gd值降低, 而斜长石结晶分异将导致熔体的Eu/Eu*值降低, 但是不会改变全岩和独居石的Nd同位素组成(Ayres and Harris, 1997)(图8)。因此, 阳春二云母花岗岩LREE含量低主要受独居石分离结晶作用所控制, 斜长石的分离结晶作用导致岩石的REE配分模式呈Eu负异常。
图8 阳春二云母花岗岩中独居石的εNd(t)-Eu/Eu*(a)和εNd(t)-Ce/Gd(b)图解
云开地体印支期花岗岩均具有过铝质与富钾的特征, 与实验岩石学中变质沉积岩部分熔融产生的熔体特征相似(Patiño Douce and Harris, 1998; Pickering and Johnston, 1998)。阳春二云母花岗岩Nd()值、Hf()值与十万大山印支期花岗岩相似(图9a, 祁昌实等, 2007; Hsieh et al., 2008), 由于岩石中加里东期继承锆石的数量远高于印支期岩浆锆石, 且两期锆石的Hf同位素模式年龄基本一致, 因此其源区的主要岩性可能是加里东期花岗岩及其围岩。云开地体晚二叠世I型花岗岩Nd()(−7.1~−4.8, Qiu et al., 2016)明显高于同时期S型花岗岩(图9b), 暗示其形成过程中可能存在幔源岩浆的参与。云开地体晚三叠世A2型花岗岩Nd()值(−11.4~−8.3)与同时期S型花岗岩相似(图9b), 表明二者的源岩组成也可能相同。云开地体印支期花岗岩与三江造山带、松马缝合带、海南同期花岗岩相比, 全岩Nd()明显偏低(图9a)。由于三江造山带、松马缝合带、海南是古特提斯洋东段分支, 存在典型的印支期岛弧岩浆作用(Fan et al., 2010; Shen et al., 2018), 而云开地体印支期岛弧岩浆报道较少、幔源岩浆的贡献不明显(Xu et al., 2018; 周岱等, 2021)。因此我们认为云开地体三叠纪S型花岗岩包括阳春二云母花岗岩来源于古老再循环地壳物质, 最有可能来自区域加里东期火成岩及其围岩的重熔作用。
数据来源: 三江造山带花岗岩据Zhu et al., 2011; Zi et al., 2012; Wang et al., 2014; Liu et al., 2015; Xu et al., 2021; 松马缝合带花岗岩据Liu et al., 2012; Qian et al., 2019; 十万大山花岗岩据祁昌实等, 2007; Hsieh et al., 2008; 海南花岗岩据He et al., 2020; 拉克兰褶皱带(LFB)花岗岩和沉积岩据Healy et al., 2004及其参考文献; 云开地体I型花岗岩据Qiu et al., 2016; 云开地体A2型花岗岩据Qing et al., 2020b; 云开地体S型花岗岩据Li et al., 2016; Qing et al., 2020a; 周岱等, 2021b。
花岗质岩浆的成因机制主要包括含水熔融和脱水熔融两种。含水熔融过程中长石类矿物发生分解、云母类矿物保持稳定, 因此熔体富集Sr、Ba, 亏损Rb; 脱水熔融过程中, 云母类矿物发生脱水分解反应, 因此熔体富集Rb、具有高Rb/Sr与Rb/Ba值的特征(Gao et al., 2017; Wu et al., 2020; Zhao et al., 2021; 郭锋等, 2022)。通过对比云开地体不同时代S型花岗岩, 发现晚二叠世S型花岗岩具有低Rb含量和Rb/Sr值的特征, 暗示其初始岩浆为含水熔融的产物; 三叠纪S型花岗岩具有高Rb含量和Rb/Sr值的特点, 显示出脱水熔融的典型特征(Inger and Harris, 1993, 图10a、b)。晚二叠世花岗岩富集Sr、Ba、Ca、Th、LREE, 贫Rb、U, 与含水熔融消耗更多的斜长石有关; 而三叠纪花岗岩恰恰相反, 亏损Sr、Ba、Ca、Th、LREE, 富集Rb、U, 与脱水熔融消耗更多的云母有关。云开地体花岗岩展示出从晚二叠世至早三叠世全岩锆饱和温度逐渐降低, 再到中‒晚三叠世全岩锆饱和温度逐渐升高的趋势, 而阳春二云母花岗岩恰好代表了温度最低点(图10c)。
(a) Sr-Rb; (b) Rb/Sr-Ba; (c) 全岩锆饱和温度随时间的演化趋势。 数据来源同图9。
古地理资料显示, 云开地体上二叠统为浅海相砂岩、页岩沉积, 缺失中下三叠统, 上三叠统为陆相红层沉积, 反映了大洋从俯冲消失到造山带垮塌的地貌演化过程(Liang and Li, 2005; Wang et al., 2013)。晚二叠世‒三叠纪的花岗质岩石组合同样反映了从大洋俯冲→地壳缩短加厚→造山带垮塌的构造背景转换(图11)。晚二叠世花岗岩显示含水熔融的特征, 三叠纪花岗岩则显示出脱水熔融的特点, 表明晚二叠世与三叠纪的构造环境存在较大差别。晚二叠世I型花岗岩(Qiu et al., 2016; 课题组未发表资料)暗示了大洋俯冲作用; 晚三叠世A2型花岗岩的出现则反映了后造山阶段的伸展垮塌环境(倪战旭等, 2019; Qing et al., 2020b; Gan et al., 2021); 中三叠世阳春二云母花岗岩代表大洋俯冲阶段与造山带垮塌阶段之间的转折阶段, 是造山带强烈缩短、地壳加厚和重熔作用的产物。
(a) 古生代末期, 古特提斯洋发生俯冲消减, 形成了区域上包括I型花岗岩在内的弧岩浆; (b) 早‒中三叠世, 印支与华南陆块发生碰撞、挤压、地壳加厚并发生深熔作用, 形成了以阳春二云母花岗岩为代表的S型花岗岩; (c) 晚三叠世, 造山带松弛垮塌, 导致岩石圈伸展, 形成了A2型花岗岩。
云开地体晚古生代到早中生代镁铁质岩和相关变质岩等岩石记录也支持大洋俯冲→陆内造山带→造山带垮塌的构造背景转换。晚二叠世岛弧型镁铁质岩的出现(Xu et al., 2018; 周岱等, 2021a)暗示当时区域受到俯冲作用的影响。早‒中三叠世角闪岩和麻粒岩的出现(Wang et al., 2007b)是造山带强烈缩短和地壳加厚的证据。断裂带糜棱岩、片麻岩黑云母Ar-Ar年龄记录了248~220 Ma的NW向左旋压扭作用、220~200 Ma的左旋张扭作用(Wang et al., 2007a, 2007b), 反映区域构造环境发生了由早‒中三叠世造山带挤压隆升到晚三叠世造山带垮塌的转换。十万大山花岗岩麻粒岩包体也记录了早‒中三叠世超高温变质作用, 以及晚三叠世等温降压退变质作用(Zhao et al., 2012), 反映了造山带从隆升到垮塌的过程。
云开地体印支期古大洋是古特提斯洋还是古太平洋?中国东南沿海地区仍缺乏二叠纪镁铁质岩浆报道, 中国东北地区增生楔、弧岩浆记录支持泛大洋初始俯冲开始于三叠纪‒早侏罗世, 而不是二叠纪(Zhou et al., 2014; Guo et al., 2015; Wang et al., 2019)。因此本文倾向于认为云开地体印支期俯冲的古大洋可能不是古太平洋。昌宁‒孟连‒Inthanon缝合带的岛弧玄武岩、安山岩支持古特提斯洋东段于二叠纪开始俯冲(Yang et al., 2014; Wai-Pan Ng et al., 2015b; Wang et al., 2018), 晚三叠世彻底关闭, 形成区域性上三叠统角度不整合(Wai-Pan Ng et al., 2015a; Metcalfe, 2021)。哀牢山缝合带和松马缝合带发育不完整的蛇绿岩碎片, 被认为是古特提斯洋东段的分支(Metcalfe, 2006; Fan et al., 2010)。
Xia et al. (2020)根据哀牢山两侧相似的沉积地层碎屑锆石分布, 提出哀牢山洋双向俯冲模型。云开地体紧邻哀牢山缝合带和松马缝合带, 极有可能受到古特提斯洋东向俯冲的影响。古特提斯构造域东段普遍存在晚二叠世、晚三叠世两阶段花岗质岩浆活动, 反映大洋俯冲→大陆碰撞→造山带垮塌的地球动力学过程(Wang et al., 2014; Yang et al., 2014)。虽然同碰撞造山过程中可以形成深熔花岗岩, 但是以形成中高级变质岩为主、花岗岩生成率低, 俯冲阶段、造山带垮塌阶段花岗岩生成速率更高(Zheng and Gao, 2021)。因此, 早‒中三叠世花岗岩的量远低于晚二叠世、晚三叠世花岗岩。云开地体与三江造山带、松马缝合带具有时间高度耦合的两阶段花岗质岩浆活动, 可能也经历了古特提斯洋东段闭合、大陆拼合的地球动力学过程(图11)。
通过对云开地体阳春二云母花岗岩开展详细的岩相学、矿物学、年代学、全岩地球化学和矿物原位Hf-Nd同位素等分析, 并结合区域构造演化史, 取得了以下主要结论和认识:
(1) 锆石两组谐和年龄分别为426.4±1.7 Ma和239.1±1.7 Ma; 独居石U-Pb年龄为239.0±0.3 Ma, 确定该岩体形成年龄为三叠纪。
(2) 阳春二云母花岗岩为S型花岗岩, 具有富集LILE、亏损HFSE和相对平坦的稀土元素配分模式。全岩、独居石、锆石的低放射成因Hf-Nd同位素组成显示其源区主要由古老再循环地壳物质组成。岩浆处于相对封闭状态, 经历了以斜长石和独居石为主的分离结晶作用。
本研究的创新性主要是将含铋四联疗法作为对照组,从多个方面证明双歧杆菌四联活菌片的治疗效果,结果显示:其联合治疗效果明显,能够有效改善溃疡面积,提高患者机体免疫力,且安全性较高。
(3) 阳春二云母花岗岩形成于晚二叠世大洋俯冲至晚三叠世造山带垮塌之间的构造转折阶段,是造山带强烈挤压加厚并发生重熔作用的产物。
致谢:感谢中国科学院广州地球化学研究所同位素国家重点实验室张乐高级工程师在LA-ICP-MS锆石U-Pb测年过程中给予的帮助, 同时感谢陈林丽工程师在电子探针分析测试过程中提供的支持。桂林理工大学地球科学学院覃小锋教授和中山大学地球科学与工程学院甘成势副教授对本文提出了极为宝贵的建议与意见, 在此一并表示衷心的感谢。
邓希光, 陈志刚, 李献华, 刘敦一. 2004. 桂东南地区大容山‒十万大山花岗岩带SHRIMP锆石U-Pb定年. 地质评论, 50(4): 426–432.
郭锋, 赵亮, 张晓兵, 吴扬名, 张博, 张峰. 2022. 华南陆块东部晚中生代岩浆作用的深部动力学过程. 大地构造与成矿学, 46(3): 416–434.
焦骞骞, 贺昌坤, 董有浦, 许德如, 陈根文, 陈诚, 师爽, 高亦文. 2020. 广东河台金矿区印支期花岗岩与混合岩成因联系及大地构造意义. 岩石学报, 36(3): 893–912.
李政林, 刘希军, 肖文交, 鲍厚银, 时毓, 刘磊, 廖帅, 覃显著. 2019. 桂西南凭祥火山岩年代学、地球化学及Hf同位素研究——对古特提斯洋最晚北向俯冲事件的启示. 地质力学学报, 25(5): 932–946.
梁晓, 徐亚军, 訾建威, 张航川, 杜远生. 2021. 独居石成因矿物学特征及其对U-Th-Pb年龄解释的制约. 地球科学, 47(4): 1–31.
娄峰, 伍静, 陈国辉. 2014. 广西栗木泡水岭印支期岩体LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 33(7): 960–965.
倪战旭, 潘罗忠, 李翠萍, 许华, 林茂江, 谭杰, 戴昱, 吴伟周, 周连文. 2019. 桂东南六陈中酸性侵入岩体LA-ICP-MS锆石U-Pb定年、岩石学、地球化学及其构造意义. 矿产与地质, 33(1): 96–105.
祁昌实, 邓希光, 李武显, 李献华, 杨岳衡, 谢烈文. 2007. 桂东南大容山‒十万大山S型花岗岩带的成因. 地球化学及Sr-Nd-Hf同位素制约. 岩石学报, 23(2): 403– 412.
邱昆峰, 杨立强. 2011. 独居石成因特征与U-Th-Pb定年及三江特提斯构造演化研究例析. 岩石学报, 27(9): 2721–2732.
覃小锋, 王宗起, 张英利, 潘罗忠, 胡贵昂, 周府生. 2011. 桂西南早中生代酸性火山岩年代学和地球化学: 对钦‒杭结合带西南段构造演化的约束. 岩石学报, 27(3): 794–808.
田梦宇, 狄永军, 王帅, 贾一龙. 2021. 广西云开地区那蓬岩体黑云母二长花岗岩年代学、地球化学特征及成因. 吉林大学学报(地球科学版), 51(3): 749–766.
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1–36.
徐夕生. 2008, 华南花岗岩‒火山岩成因研究的几个问题. 高校地质学报, 14(3): 283–294.
张怀峰, 陆建军, 王汝成, 章荣清. 2013. 广西栗木矿区牛栏岭岩体印支期年龄的厘定及其意义. 高校地质学报, 19(2): 220–232.
赵亮, 郭锋, 范蔚茗, 李超文, 覃小锋, 李红霞. 2010. 广西十万大山地壳演化: 来自印支期花岗岩中麻粒岩包体锆石U-Pb年代学及Hf同位素记录. 科学通报, 55(15): 1489–1500.
钟增球, 游振东, 周汉文, 韩郁菁. 1996. 两广云开隆起区基底的组成演化及其基本结构格局. 中国区域地质, 15(1): 36–42.
周岱, 胡军, 杨文强, 陈奇, 王祥东, 王磊, 徐德明. 2021b. 粤西新兴岩体的形成时代与成因研究: 对古特提斯洋东支关闭时间的约束. 中国地质, 48(6): 1896–1923.
周岱, 柯贤忠, 王祥东, 王磊, 王晶. 2021a. 云开地块晚二叠世富Fe-Ti-P超镁铁质岩的年代学、地球化学与岩石成因. 地球科学, 46(4): 1295–1310.
周汉文, 游振东, 钟增球, 韩郁菁. 1996. 粤西云开前寒武纪基底麻粒岩、紫苏花岗岩放射性元素分布特征与岩石成因讨论. 地球科学, 21(5): 75–81.
Acosta-Vigil A, Buick I, Cesare B, London D, Morgan G B. 2012. The extent of equilibration between melt and residuum during regional anatexis and its implications for differentiation of the continental crust: A study of partially melted metapelitic enclaves., 53(7): 1319–1356.
Acosta-Vigil A, Buick I, Hermann J, Cesare B, Rubatto D, London D, Morgan G B. 2010. Mechanisms of crustal anatexis: A geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain., 51(4): 785–821.
Ayres M, Harris N. 1997. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: Constraints from Himalayan leucogranites., 139(1): 249–269.
Bachmann O, Bergantz G W. 2008. Rhyolites and their source mushes across tectonic settings., 49(12): 2277–2285.
Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects., 97(1): 1–29.
Cesare B. 2000. Incongruent melting of biotite to spinel in a quartz-free restite at El Joyazo(SE Spain): Textures and reaction characterization., 139(3): 273–284.
Chen C H, Hsieh P S, Lee C Y, Zhou H W. 2011. Two episodesof the Indosinian thermal event on the South China Block: Constraints from LA-ICPMS U-Pb zircon and electron microprobe monazite ages of the Darongshan S-type granitic suite., 19(4): 1008–1023.
Chen C H, Liu Y H, Lee C Y, Sano Y J, Zhou H W, Xiang H, Takahata N. 2017. The Triassic reworking of the Yunkai massif (South China): EMP monazite and U-Pb zircon geochronologic evidence., 694: 1–22.
Chen C H, Liu Y H, Lee C Y, Xiang H, Zhou H W. 2012. Geochronology of granulite, charnockite and gneiss in the poly-metamorphosed Gaozhou Complex (Yunkai massif), South China: Emphasis on theEMP monazite dating., 144–145: 109–129.
Cherniak D J, Watson E B, Grove M, Harrison T M. 2004. Pb diffusion in monazite: A combined RBS/SIMS study., 68(4): 829–840.
Cochelin B, Wang B, Liu J S, Lu S H, Shu L S, Gumiaux C, Chen Y, Song F. 2022. Early Mesozoic anatexis-induced strain partitioning and gneiss doming in the Yunkai Massif, South China: A response to contrasted dynamicsof Paleo-Pacific and Paleo-Tethys subductions?, 41, e2022TC007457.
Fan W M, Wang Y J, Zhang A M, Zhang F F, Zhang Y Z. 2010. Permian arc-back-arc basin development along the Ailaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China., 119: 553–568.
Faure M, Lepvrier C, Nguyen V V, Vu T V, Lin W, Chen Z C. 2014. The South China block-Indochina collision: Where, when, and how?, 79: 260–274.
Fisher C M, Bauer A M, Luo Y, Sarkar C, Hanchar J M, Vervoort J D, Tapster S R, Horstwood M, Pearson D G. 2020. Laser ablation split-stream analysis of the Sm-Nd and U-Pb isotope compositions of monazite, titanite, and apatite — Improvements, potential reference materials, and application to the Archean Saglek Block gneisses., 539: 1–26.
Gan C S, Wang Y J, Zhang Y Z, Qian X, Zhang A M. 2021. The assembly of the South China and Indochina blocks: Constraints from the Triassic felsic volcanics in the Youjiang Basin., 133(9–10): 2097–2112.
Gao L E, Zeng L S, Asimow P D. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites., 45(1): 39–42.
Grimes C B, Ushikubo T, Kozdon R, Valley J W. 2013. Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon., 179: 48–66.
Guo F, Li H X, Fan W M, Li J Y, Zhao L, Huang M W, Xu W L. 2015. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China: Petrologic and geochemical evidence from the Tumen mafic intrusive complex., 224– 225: 46–60.
Guo L G, Liu Y P, Li C Y, Xu W, Ye L. 2009. SHRIMP zircon U-Pb geochronology and lithogeochemistry of Caledoniangranites from the Laojunshan area, southeastern Yunnan province, China: Implications for the collision between the Yangtze and Cathaysia blocks., 43(2): 101–122.
He H Y, Wang Y J, Cawood P A, Qian X, Zhang Y Z, Zhao G F. 2020. Permo-Triassic granitoids, Hainan Island, link to Paleotethyan not Paleo-Pacific tectonics., 132(9–10): 2067–2083.
Healy B, Collins W J, Richards S W. 2004. A hybrid origin for Lachlan S-type granites: The Murrumbidgee Batholith example., 78(1): 197–216.
Hsieh P S, Chen C H, Yang H J, Lee C Y. 2008. Petrogenesis of the Nanling Mountains granites from South China: Constraints from systematic apatite geochemistry and whole-rock geochemical and Sr-Nd isotope compositions., 33(5): 428–451.
Hu L S, Du Y S, Cawood P A, Xu Y J, Yu W C, Zhu Y H, Yang J H. 2014. Drivers for late Paleozoic to early Mesozoic orogenesis in South China: Constraints from the sedimentary record., 618: 107–120.
Huang B C, Yan Y G, Piper J D A, Zhang D H, Yi Z Y, Yu S, Zhou T H. 2018. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times., 186: 8–36.
Inger S, Harris N. 1993. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya., 34(2): 345–368.
Jiao S J, Li X H, Huang H Q, Deng X G. 2015. Metasedimentary melting in the formation of charnockite: Petrological and zircon U-Pb-Hf-O isotope evidence from the Darongshan S-type granitic complex in southern China., 239: 217–233.
Lee J K W, Williams I S, Ellis D J. 1997. Pb, U and Th diffusion in natural zircon., 390(6656): 159–162.
Li J H, Zhao G C, Johnston S T, Dong S W, Zhang Y Q, Xin Y J, Wang W B, Sun H S, Yu Y Q. 2017. Permo-Triassic structural evolution of the Shiwandashan and Youjiang structural belts, South China., 100: 24–44.
Li X H, Li Z X, He B, Li W X, Li Q L, Gao Y, Wang X C. 2012. The Early Permian active continental margin and crustal growth of the Cathaysia Block:U-Pb, Lu-Hf and O isotope analyses of detrital zircons., 328: 195–207.
Li Y J, Wei J H, Santosh M, Tan J, Fu L B, Zhao S Q. 2016. Geochronology and petrogenesis of Middle Permian S-type granitoid in southeastern Guangxi Province, SouthChina: Implications for closure of the eastern Paleo-Tethys., 682: 1–16.
Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model., 35(2): 179–182.
Liang X Q, Li X H. 2005. Late Permian to Middle Triassic sedimentary records in Shiwandashan Basin: Implication for the Indosinian Yunkai Orogenic Belt, South China., 177(3): 297–320.
Lin W, Wang Q C, Chen K. 2008. Phanerozoic tectonics of South China block: New insights from the polyphase deformation in the Yunkai massif., 27(6): 1–16.
Liu H C, Wang Y J, Cawood P A, Fan W M, Cai Y F, Xing X W. 2015. Record of Tethyan ocean closure and Indosinian collision along the Ailaoshan suture zone (SW China)., 27(3): 1292–1306.
Liu J L, Tran M D, Tang Y, Nguyen Q L, Tran T H, Wu W B, Chen J F, Zhang Z C, Zhao Z D. 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications., 22(2): 628–644.
Liu S F, Peng S B, Kusky T, Polat A, Han Q S. 2018. Origin and tectonic implications of an Early Paleozoic (460– 440 Ma) subduction-accretion shear zone in the northwestern Yunkai Domain, South China., 322: 104–128.
Matthews K J, Maloney K T, Zahirovic S, Williams S E, Seton M, Müller R D. 2016. Global plate boundary evolution and kinematics since the late Paleozoic., 146: 226–250.
Metcalfe I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context., 9(1): 24–46.
Metcalfe I. 2021. Multiple Tethyan ocean basins and orogenic belts in Asia., 100: 87–130.
Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance., 31(6): 529– 532.
Patiño Douce A E, Harris N. 1998. Experimental constraints on Himalayan anatexis., 39(4): 689–710.
Pickering J M, Johnston D A. 1998. Fluid-absent melting behavior of a two-mica metapelite: Experimental constraintson the origin of Black Hills granite., 39(10): 1787–1804.
Piechocka A M, Gregory C J, Zi J W, Sheppard S, Wingate M T D, Rasmussen B. 2017. Monazite trumps zircon: Applying SHRIMP U-Pb geochronology to systematicallyevaluate emplacement ages of leucocratic, low-temperaturegranites in a complex Precambrian orogen., 172(8): 63–80.
Qian X, Wang Y J, Zhang Y Z, Zhang Y H, Senebouttalath V, Zhang A, He H Y. 2019. Petrogenesis of Permian-Triassicfelsic igneous rocks along the Truong Son zone in northern Laos and their Paleotethyan assembly., 328–329: 101–114.
Qing L, Jiang Y H, Du F G. 2020a. Geodynamics of Late Paleozoic to Early Mesozoic magmatism in South China: Insights from the genesis of the Late Permian S-type granites in the Yunkai Massif., 128(3): 275–301.
Qing L, Jiang Y H, Du F G. 2020b. Petrogenesis and tectonic significance of early Indosinian A-type granites in the Xinxing pluton, southern South China., 114(3): 217–242.
Qiu X F, Yang H M, Zhao X M, Lu S S, Wu N W, Zhang L G, Zhang C H. 2016. Early Triassic gneissic granites in the Gaozhou Area (Yunkai Massif), South China: Implications for the amalgamation of the Indochina and South China Blocks., 124(3): 395–409.
Shen L W, Yu J H, O’Reilly S Y, Griffin W L, Zhou X Y. 2018. Subduction-related middle Permian to early Triassicmagmatism in central Hainan Island, South China., 318–319: 158–175.
Shu L S, Wang B, Cawood P A, Santosh M, Xu Z Q. 2015. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China., 34(8): 1600–1621.
Song M J, Shu L S, Santosh M. 2017. Early Mesozoic intracontinental orogeny and stress transmission in South China: Evidence from Triassic peraluminous granites., 174: 591–607.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes.,,, 42: 313–345.
Wai-Pan Ng S, Chung S L, Robb L J, Searle M P, Ghani A A, Whitehouse M J, Oliver G J H, Sone M, Gardiner N J, Roselee M H. 2015a. Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 1. Geochemical and Sr-Nd isotopic characteristics., 127(9–10): 1209–1237.
Wai-Pan Ng S, Whitehouse M J, Searle M P, Robb L J, Ghani A A, Chung S L, Oliver G J H, Sone M, Gardiner N J, Roselee M H. 2015b. Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 2. U-Pb zircon geochronology and tectonic model., 127(9–10): 1238–1258.
Wang B D, Wang L Q, Chen J L, Yin F G, Wang D B, Zhang W P, Chen L K, Liu H. 2014. Triassic three-stage collision in the Paleo-Tethys: Constraints from magmatism in the Jiangda-Deqen-Weixi continental margin arc, SW China., 26(2): 475–491.
Wang F, Xu W L, Xing K C, Wang Y N, Zhang H H, Wu W, Sun C Y, Ge W C. 2019. Final closure of the Paleo- Asian Ocean and onset of subduction of Paleo-Pacific Ocean: Constraints from early Mesozoic magmatism in central southern Jilin Province, NE China.:, 124(3): 2601–2622.
Wang Y J, Fan W M, Cawood P A, Ji S C, Peng T P, Chen X Y. 2007a. Indosinian high-strain deformation for the Yunkaidashan tectonic belt, south China: Kinematics and40Ar/39Ar geochronological constraints., 26(6): 1-26.
Wang Y J, Fan W M, Guo F, Peng T P, Li C W. 2003. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: Implications for thelithospheric boundary between the Yangtze and Cathaysia Blocks., 45(3): 263–286.
Wang Y J, Fan W M, Zhang G W, Zhang Y H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies., 23(3): 1273–1305.
Wang Y J, Fan W M, Zhao G C, Ji S C, Peng T P. 2007b. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block., 12(4): 404–416.
Wang Y J, Zhang A M, Fan W M, Zhao G C, Zhang G W, Zhang Y Z, Zhang F F, Li S Z. 2011. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprintsfrom the gneissoid granites of Wugong and Wuyi-Yunkai Domains., 127(1): 239–260.
Wang Y J, Qian X, Cawood P A, Liu H C, Feng Q L, Zhao G C, Zhang Y H, He H Y, Zhang P Z. 2018. Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments., 186: 195–230.
Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types., 64(2): 295–304.
Williams M L, Jercinovic M J, Hetherington C J. 2007. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology., 35: 137–175.
Wu F Y, Liu X C, Liu Z C, Wang R C, Xie L, Wang J M, Ji W Q, Yang L, Liu C, Khanal G P, He S X. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization., 352–353, 105319.
Xia X P, Xu J, Huang C, Long X P, Zhou M L. 2020. Subduction polarity of the Ailaoshan Ocean (eastern Paleotethys): Constraints from detrital zircon U-Pb and Hf-O isotopes for the Longtan Formation., 132(5–6): 987–996.
Xu J, Xia X P, Wang Q, Spencer C J, He B, Lai C K. 2021. Low-δ18O A-type granites in SW China: Evidence for the interaction between the subducted Paleotethyan slab and the Emeishan mantle plume., 134(1–2): 81–93.
Xu W C, Luo B J, Xu Y J, Wang L, Chen Q. 2018. Geochronology, geochemistry, and petrogenesis of late Permian to early Triassic mafic rocks from Darongshan, South China: Implications for ultrahigh-temperature metamorphism and S-type granite generation., 308–309: 168–180.
Yang T N, Ding Y, Zhang H R, Fan J W, Liang M J, Wang X H. 2014. Two-phase subduction and subsequent collision define the Paleotethyan tectonics of the southeastern Tibetan Plateau: Evidence from zircon U-Pb dating, geochemistry, and structural geology of the Sanjiang orogenic belt, southwest China., 126(11–12): 1654–1682.
Zeng L S, Asimow P D, Saleeby J B. 2005. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source., 69(14): 3671–3682.
Zhang G W, Guo A L, Wang Y J, Li S Z, Dong Y P, Liu S F, He D F, Cheng S Y, Lu R K, Yao A P. 2013. Tectonics of South China continent and its implications.:, 56(1): 1804–1828.
Zhang K J, Cai J X. 2009. NE-SW-trending Hepu-Hetai dextral shear zone in southern China: Penetration of the Yunkai Promontory of South China into Indochina., 31(7): 737–748.
Zhao G C, Cawood P A. 2012. Precambrian geology of China., 222–223: 13–54.
Zhao J L, Qiu J S, Liu L, Wang R Q. 2016. The Late Cretaceous I- and A-type granite association of southeast China: Implications for the origin and evolution of post-collisional extensional magmatism., 240–243: 16–33.
Zhao L, Guo F, Fan W M, Li C W, Qin X F, Li H X. 2012. Origin of the granulite enclaves in Indo-Sinian peraluminous granites, South China and its implication for crustal anatexis., 150: 209–226.
Zhao L, Guo F, Zhang X B, Wang G Q. 2021. Cretaceous crustal melting records of tectonic transition from subduction to slab rollback of the Paleo-Pacific Plate in SE China., 384–385, 105985.
Zheng Y F, Gao P. 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries., 402–403, 106232.
Zhou J B, Cao J L, Wilde S A, Zhao G C, Zhang J J, Wang B. 2014. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China: Pacific subduction- accretion in NE China., 33(12): 2444–2466.
Zhu J J, Hu R Z, Bi X W, Zhong H, Chen H. 2011. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean., 126(3): 248–264.
Zi J W, Cawood P A, Fan W M, Tohver E, Wang Y J, McCuaig T C. 2012. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys., 140–141: 166–182.
Indosinian Tectonic Transition in Yunkai Massif: Petrological and Geochemical Constraints from Two-mica Granite in Yangchun Area, South China
MA Zhiwang1, 2, GUO Feng1, 3*
(1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, Guangdong, China)
The tectonic background of the Indosinian granites in South China Block remains highly debated. The Yunkai massif, connecting the Paleo-Tethys and Paleo-Pacific tectonic domains, is a key site for studying the tectonic background of the Indosinian granitoids in South China. In this paper, we select a two-mica granitic pluton from the Yangchun area of the Yunkai Massif to conduct comprehensive researches including petrology, geochronology, and geochemistry. Zircon U-Pb dating yield two concordant206Pb/238U ages of 426.4±1.7 Ma (MSWD=2.4,=8) and 239.1±1.7 Ma (MSWD=1.2,=4), respectively. A further monazite U-Pb dating gives only one concordant206Pb/238U age at 239.0±0.3 Ma (MSWD=1.2,=31), consistent with the younger zircon U-Pb age. We therefore conclude that the Yangchun two-mica granite was formed during Triassic (239 Ma). The granite rocks belong to S-type granite with a peraluminous affinity. They also show enrichment in large ion lithophile elements and depletion in high field strength elements and relatively flat chondrite-normalized rare earth element patterns with negative Eu anomalies, and have low zircon saturation temperature of 725–747 ℃ as well. The bulk-rock and monazite Nd and zircon Hf isotope analyses yield whole-rockNd() values from –10.8 to –9.4, monaziteNd() values from –10.9 to –8.4, and zirconHf() values from –13.2 to –7.8, with depleted model age ranges of 1.8–1.9 Ga for whole rockDM2(Nd), 1.7–1.9 Ga for monaziteDM2(Nd) and 1.8–2.1 Ga for zirconDM2(Hf). The consistent Nd and Hf isotope data among the bulk rock, monazite and zircon in the Yangchun two mica granite indicate that the granite was derived from ancient recycled crustal components. The parent magma experienced a dominated fractionation of plagioclase and monazite which resulted in the negative Sr and Eu anomalies and low LREE concentrations. Considering the regional geological background, we propose that the two-mica granite in the Yangchun area formed during the tectonic transition between the oceanic slab subduction and orogenic collapse: The late Permian shallow-marine sedimentary sequences and I-type granitic magmatism indicate the subduction of Paleo- Tethys Ocean; the early-middle Triassic crustal shortening and thickening triggered the crustal anatexis to form the S-type granitic magmas such as the Yangchun two-mica granitic pluton; the late Triassic terrestrial red deposits and the occurrence of A2-type granite suggest a stage of orogenic collapse and the resultant lithospheric extension.
tectonic transition; petrology and geochemistry; two-mica granite; Indosinian; Yunkai Block
2022-11-15;
2022-12-05
国家自然科学基金项目(42073032、41525006)资助。
麻志旺(1998–), 男, 硕士研究生, 地球化学专业。E-mail: mazhiwang@gig.ac.cn
郭锋(1971–), 男, 研究员, 主要从事岩石学与大地构造学研究。E-mail:guofengt@263.net; fengguo@gig.ac.cn
P595; P597
A
1001-1552(2023)05-1183-019
10.16539/j.ddgzyckx.2023.05.014