李芷凡,刘欣然,王子圆,冯雯,雷军强,2*
随着乳腺癌发病率的不断增加,乳腺癌已经成为全世界女性最常见的恶性肿瘤[1]。2021年,美国临床肿瘤学会(ASCO)指南[2]推荐将新辅助化疗(neoadjuvant chemotherapy, NAC)作为炎症性乳腺癌患者或局部晚期患者的首选治疗方法,这不仅提高了保乳手术的机会,还降低了腋窝分期,使晚期乳腺癌患者或有保乳意愿的患者可以获得手术或保乳的机会[3]。然而,尽管NAC可使大部分患者受益,但仍有部分患者对NAC的反应不佳,少数患者甚至在治疗期间出现疾病进展[4]。另外,化疗药物也会导致部分患者出现不良反应(如骨髓抑制、肝肾功能损害、心力衰竭)[5-6]。因此,在化疗前评估乳腺癌患者是否会从NAC中受益至关重要。病理完全缓解(pathological complete response, pCR)是新辅助治疗疗效评估中使用最广泛的替代终点,与未获得pCR 的患者相比,获得pCR的患者总生存期和无病生存率更好[7]。因此pCR可作为预测长期临床治疗益处的替代终点[8-9]。
影像学检查已经成为评估NAC疗效的重要方法,许多国内外指南均推荐使用影像学方法来评估NAC疗效[2,10]。虽然超声检查具有操作简单、价格较低、无辐射等优点,但是乳腺MRI 在评估NAC 疗效方面可以提供更多的信息以提高诊断的准确度[11]。据报道,一些临床病理学指标也与pCR 相关。CHEN 等[12]发现高肿瘤细胞增殖指数(Ki-67)与更多pCR 事件相关。HAYASHI 等[13]发现雌激素受体(estrogen receptor,ER)和人表皮生长因子受体2(human epidermal growth factor receptor 2, HER-2)表达状态是pCR的重要因素。年龄、肿瘤体积,以及肿瘤级别等因素也被证明与pCR增加有关[14]。
早期预测乳腺癌患者NAC 疗效有助于改进患者的治疗方案,因此开发一种无创准确的预测模型对于指导乳腺癌患者的诊疗是非常必要的。本研究旨在创建并验证一种基于NAC 前MRI 的影像特征及临床病理特征的列线图模型,用于NAC 后乳腺癌患者pCR 的早期预测,以帮助临床医生制订并及时调整治疗方案,实现患者的个体化治疗。
本研究遵守《赫尔辛基宣言》并通过兰州大学第一医院伦理委员会批准,免除受试者知情同意(批准文号:LDYYLL2022-114)。回顾性收集2021 年1 月至2022 年10 月在兰州大学第一医院接受NAC 后进行手术的乳腺癌患者的临床资料。纳入标准:(1)术前接受了NAC的乳腺癌患者;(2)完成了预先计划的NAC方案;(3)在本院进行手术并且进行了病理评估;(4)接受NAC前进行了MRI检查,并通过超声引导的穿刺活检获得免疫组织化学结果。排除标准:(1)临床数据未完整记录;(2)患者在化疗前曾接受过其他治疗;(3)图像质量差以致难以进行评估。最终,本研究共纳入82名患者资料。
所有患者的治疗方案和治疗周期遵循国家综合癌症网络指南[15]。所有乳腺癌患者均完成了≥4 周期的NAC,治疗方案主要包括以蒽环类为基础的化疗、以紫杉醇为基础的化疗以及以蒽环类为基础的化疗序贯以紫杉醇为基础的化疗。HER-2 阳性患者也接受了曲妥珠单抗或/和帕妥珠单抗治疗。
患者的临床及病理信息包括年龄、体质量指数(body mass index, BMI)、月经状态、肿瘤组织学类型、肿瘤组织学分级、Ki-67 指数、ER、孕激素受体(progesterone receptor, PR)及HER-2 表达状态、分子亚型及NAC前腋窝淋巴结状态等。
所有检查均在3.0 T MRI系统(SIGNA Architect,GE Healthcare, Milwaukee, WI)上进行,使用8 通道专用乳腺相控阵线圈行常规MRI。扫描序列如下:(1)轴位T1WI序列;(2)轴位脂肪抑制T2WI序列;(3)轴位短时反转恢复(short time inversion recovery,STIR)扩散加权成像(diffusion-weighted imaging,DWI)序列,b值为0、800 s/mm2;(4)轴位脂肪抑制动态对比 增 强MRI(dynamic contrast-enhanced MRI,DCE-MRI)序列,经肘静脉团注0.2 mL/kg 加乐显(Gadobutrol, Bayer),速率为2.0 mL/s,随后注射20 mL 生理盐水冲管,单期扫描时间为60 s,共8 期。MR图像具体采集参数如表1所示。
表1 MRI图像采集参数Tab.1 The acquisition parameters of MRI images
MRI 影像特征分别由两名住院医师(均具有3 年的影像诊断经验)独立进行评估,并以二者评估一致的结果为准。放射科医师不知道肿瘤病理反应结果以及其他放射科医生对图像的解释。当评估结果不一致时,则与另一位主任医师(具有25年的影像诊断经验)进行讨论来确定最终结果。MRI 影像学特征包括:病灶数量(单灶或多灶性病变)、病变类型(肿块/非肿块增强)、肿瘤的最大径、肿瘤的边缘形态、病灶内部强化特点、时间-信号强度曲线(time-signal intensity curve, TIC)类型、背景实质强化程度以及肿瘤ADC 值。ADC 值是在识别ADC 图中的低信号肿瘤区域后,在病变上手动绘制二维ROI,避开正常的乳腺组织,脂肪组织和坏死区域来测量的。记录了ADC的最小值(ADCmin)、平均值(ADCmean)和最大值(ADCmax)。
免疫组化染色表达水平>1%表明ER、PR 阳性[16]。免疫组织化学染色评分为3+定义为HER-2阳性。如果HER-2评分为2+,则通过基因扩增与原位杂交进行鉴定[17]。如果染色阳性率≥20%,Ki-67增殖指数被归类为高增殖,<20%被归类为低增殖[18]。依据ER、PR、HER-2 及Ki-67 表达进行分子分型。ER、PR、HER-2 和Ki-67表达的NAC前状态是从穿刺标本的免疫组织化学分析中获得的。NAC 后的病理反应评估基于Miller-Payne 系统[19],pCR 被定义为乳腺原发灶无浸润性癌(可存在导管原位癌)且区域淋巴结阴性,即原发灶MP5级且淋巴结阴性[20]。
采用SPSS 24.0软件(IBM, Armonk, NY, USA)和R软件4.1.2(RStudio, Boston, MA)进行统计学分析。对于连续变量,正态性检验采用Kolmogorov-Smirnov法进行,并且使用均值±标准差或中位数(四分位数间距)来表示,独立样本t检验或Mann-WhitneyU检验被用于连续变量的组间比较。约登指数用于确定连续变量的最佳截断值。分类变量使用频数(百分比)表示,χ2检验或Fisher 精确检验用于分类变量的比较。
对于独立预测因素的选择,首先进行单因素逻辑回归分析,然后选择差异具有统计学意义(P<0.05)的变量再进行多因素逻辑回归分析,最终筛选出pCR的独立预测因素(P<0.05)用于构建多因素逻辑回归模型,并绘制列线图。
进行Hosmer-Lemeshow 检验判断列线图的拟合情况。当P>0.05时,列线图拟合较好。绘制校准曲线评估列线图预测的结果和实际结果间的一致性。使用ROC曲线评价列线图模型的诊断价值,曲线下面积(area under the curve, AUC)越大,代表诊断价值越高。决策曲线分析(decision curve analysis,DCA)用于评价模型的临床应用的净获益。采用Bootstrap法验证列线图。
本研究共纳入82 名患者资料,患者年龄为(51.96±10.81)岁。82 名患者中29 名患者实现了pCR,53 名患者未实现pCR。两组患者的影像示意图如图1、图2所示。两组患者的临床、病理及影像特征如表2 所示。pCR 组和非pCR 组间,除腋窝淋巴结状态、分子亚型、ER、PR 及HER-2 状态、ADCmean、ADCmin及ADCmax值差异具有统计学意义(P<0.05)外,其余特征间差异均不具有统计学意义(P>0.05)。
图1 女,60 岁,左乳浸润性导管癌,行6 周期新辅助化疗(neoadjuvant chemotherapy, NAC)后手术,术后病理证实为病理完全缓解(pathological complete response, pCR)。1A~1E 分别为化疗前T1WI、脂肪抑制T2WI(T2 weighted imaging fat saturation, FS-T2WI)、动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)、扩散加权成像(diffusion-weighted imaging, DWI)、表观扩散系数(apparent diffusion coefficient, ADC)影像,可见左乳肿物异常强化并弥散受限;1F~1J分别为化疗后T1WI、FS-T2WI、DCE-MRI、DWI、ADC影像,各序列均未见肿块及异常强化。Fig.1 Female, 60 years old, invasive ductal carcinoma of the left breast, underwent surgery after 6 cycles of neoadjuvant chemotherapy (NAC), and the postoperative pathology confirms that the breast cancer achieves pathological complete response (pCR).1A-1E are images of T1WI, T2 weighted imaging fat saturation (FS-T2WI), dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) before NAC,respectively.The left breast mass is abnormally enhanced and dispersed is restricted.1F-1J are images of T1WI, FS-T2WI, DCE-MRI, DWI, and ADC after NAC,and there are no masses and abnormal enhancement in each sequence.
图2 女,51 岁,右乳浸润性导管癌,行6 周期新辅助化疗(neoadjuvant chemotherapy, NAC)后手术,术后病理发现残留大量浸润性癌(非特殊类型,Ⅲ级),Miller-Payne 分级为2 级。2A~2E 分别为化疗前T1WI、脂肪抑制T2WI(T2 weighted imaging fat saturation, FS-T2WI)、动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)、扩散加权成像(diffusion-weighted imaging, DWI)、表观扩散系数(apparent diffusion coefficient, ADC)影像,可见右乳外上象限肿物异常强化并弥散受限;2F~2J分别为化疗后T1WI、FS-T2WI、DCE-MRI、DWI、ADC影像,可见右乳外上象限异常强化肿物较前略增大。Fig.2 Female, 51 years old, invasive ductal carcinoma of right breast, underwent surgery after 6 cycles of neoadjuvant chemotherapy (NAC), and a large number of invasive carcinomas (non-special type, grade Ⅲ) are found in the postoperative pathology, and Miller-Payne is grade 2.2A-2E are images of T1WI, T2 weighted imaging fat saturation(FS-T2WI), dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) before NAC, respectively.It is shown that the mass in the outer upper quadrant of the right breast is abnormally enhanced and diffused is restricted.The images of T1WI, FS-T2WI, DCE-MRI, DWI, and ADC after NAC show that the abnormally reinforced mass in the outer upper quadrant of the right breast is slightly larger than before.
表2 患者基线特征表Tab.2 Patients characteristics
腋窝淋巴结转移(P=0.03)、分子亚型(Luminal B型,P=0.02)、ER状态(P<0.01)、PR状态(P<0.01)、HER-2 状态(P<0.01)、ADCmean(P<0.01)、ADCmin(P<0.01)、ADCmax(P<0.01)显示为pCR 的相关预测因素,见表3。不同ADC 值的最佳截断值(ADCmean:0.915×10-3mm2/s;ADCmin:0.505×10-3mm2/s;ADCmax:1.475×10-3mm2/s)是通过绘制预测pCR的ROC曲线来确定的。
表3 单因素逻辑回归分析Tab.3 Univariate logistic regression analysis
将单因素分析中有统计学差异的因素纳入多因素逻辑回归分析,结果显示,PR 状态(P=0.04)、HER-2 状态(P<0.01)、ADCmax(P=0.03)为pCR 的独立预测因素,见表4。
表4 多因素逻辑回归分析Tab.4 Multivariate logistic regression analysis
本研究结合PR状态、HER-2状态以及ADCmax构建了二元多因素逻辑回归模型以预测乳腺癌患者NAC 后pCR,并绘制了列线图(图3)。通过绘制列线图的ROC曲线(图4)得到列线图的AUC值为0.86(0.78-0.94),表明列线图对于可实现pCR 的患者具有良好的区分度。Bootstrap 校正的C 指数为0.84,说明模型的预测能力良好。校正曲线(图5)表明列线图预测的pCR 与实际的pCR 之间具有较好的一致性。Hosmer-Lemeshow 检验显示模型的拟合优度良好(P=0.97)。DCA 曲线如图6 所示。上述图像的绘制均通过R软件4.1.2(RStudio, Boston, MA)完成。
图3 预测乳腺癌患者新辅助化疗后病理完全缓解的列线图。PR:孕激素受体;HER-2:人表皮生长因子受体2;ADC:表观扩散系数;pCR:病理完全缓解。Fig.3 Nomogram for predicting pCR after neoadjuvant chemotherapy in breast cancer patients.PR: progesterone receptor; HER-2: human epidermal growth factor receptor 2; ADC: apparent diffusion coefficient;pCR: pathological complete response.
图4 列线图的ROC曲线。图5 列线图的校准曲线。图6 列线图的DCA曲线。DCA:决策曲线分析。Fig.4 ROC curve of nomogram.Fig.5 Calibration curve of nomogram.Fig.6 DCA curve of nomogram.DCA: decision curve analysis.
本研究结合临床病理特征及MRI影像特征,构建了列线图模型,以期实现对NAC 后pCR 患者的准确预测。对NAC疗效的早期预测可以帮助临床医生及时调整对NAC反应不佳患者的治疗方案,避免手术时机的延误,实现患者的个性化诊疗。与近年来发表的单独影像特征预测模型研究[21-22]相比,本研究分析了基于多序列MRI的多个影像特征,并且与临床病理学特征相联合,构建的列线图模型显示出更优的预测效能。
背景实质强化(background parenchymal enhancement, BPE)作为乳腺DCE-MRI 研究中的重要评估指标,在评估乳腺癌NAC疗效方面也受到了人们的广泛关注。虽然有研究[23]表明NAC前BPE程度可作为HER-2 阳性乳腺癌患者NAC 后达到pCR 的预测因素,但是也有研究[24-25]发现乳腺癌患者中pCR 组和非pCR组在基线BPE方面没有差异。本研究的结果也显示BPE无法作为pCR的独立预测因素。有研究[23]推测这种差异的原因可能与HER-2基因的表达有关,但是这一推论尚未得到证实,未来还需要进一步探索。定量MRI 可以通过评估细胞结构和血管结构的早期变化,实现对疾病的治疗反应的早期预测。作为功能MRI 的定量参数之一,ADC 值可以提供水扩散率的定量测量,并提供有关肿瘤细胞及其细胞膜完整性的信息[26]。HAHN 等[27]的研究表明在DCE-MRI 中加入DWI 显著提高了预测病理反应的诊断性能。LIANG等[21]的研究也显示ADC 值是pCR 的独立预测因素,并被用于该研究列线图预测模型的建立。另外,还有研究[28]表明与ADCmean值及ADCmin值相比,ADCmax值可以提供更多的肿瘤内在信息。这些研究的结果与本研究的发现也是一致的。
先前ESSERMAN 等[29]以及ALBA 等[30]的研究都显示PR 阴性乳腺癌患者更易实现NAC 后的pCR。VAN MACKELENBERGH 等[31]的研究也发现PR 阴性肿瘤患者的pCR 率高于PR 阳性患者,并且该研究也显示PR 阴性是乳腺癌患者能否实现pCR的一个独立预测因素。PR 阴性的乳腺癌表现出对化疗药物更高的敏感性[32],这可能与PR 阴性乳腺癌细胞增殖指数高且分化程度低有关。
对于HER-2 状态,有研究[29]发现HER-2 阳性患者的pCR 率(39%)明显高于HER-2 阴性患者(18%)。HAQUE 等[33]的研究结果也显示在不同病理类型的患者中,HER-2阳性患者的pCR率最高(38.7%)。GOORTS等[34]及LÜ 等[35]的研究也显示激素受体阴性及HER-2 阳性的患者更易实现pCR。导致这种现象的原因一方面可能是由于HER-2阳性提示肿瘤细胞增殖活性加强,增加了对化疗的敏感性;另一方面,HER-2 阳性乳腺癌患者都接受了曲妥珠单抗或/和帕妥珠单抗靶向治疗,临床治疗效果较好。本研究的发现与之前研究的结果一致,进一步支持了本研究结果的可靠性。另外,许多研究[36-37]表明,Ki-67水平与肿瘤细胞增殖有关,可用于预测乳腺癌NAC 反应,但是在本研究中并没有发现类似结果,可能是本研究样本量较少的缘故。
本研究仍然存在一些局限性:(1)本研究的样本量较小,未来的研究中可能需要更多的病例;(2)所有分析的案例均来自同一医院,没有进行外部验证,因此研究结果可能并不普遍适用;(3)本研究为回顾性研究,未来应进行更高质量的前瞻性研究。
本研究发现了一种结合PR、HER-2 状态及ADC 最大值的列线图来预测乳腺癌患者NAC 后的pCR。Bootstrap 内部验证分析显示,列线图估计值和实际pCR概率之间具有良好的区分和一致性。AUC值确认该模型具有良好的临床诊断价值。列线图对于临床医生预测pCR具有重要价值,可能有利于指导治疗方案的制订。
作者利益冲突声明:全体作者均声明无利益冲突。
作者贡献声明:雷军强设计本研究的方案,对稿件重要的智力内容进行了修改;李芷凡起草和撰写稿件,获取、分析或解释本研究的数据;刘欣然、王子圆、冯雯获取、分析或解释本研究的数据,对稿件重要的智力内容进行了修改;冯雯获得了甘肃省教育科技创新项目资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。