徐晓倩,康立清,2*,刘凤海,2
宫颈癌是女性生殖系统最常见的癌症之一[1],其发病率和死亡率在我国逐年上升并呈年轻化趋势[2]。盆腔淋巴结转移(pelvic lymph node metastasis,PLNM)是影响宫颈癌生存预后的关键预测因素,但在宫颈癌早期PLNM 的发生率不足30%[3-4]。盆腔淋巴结清扫术对大部分早期宫颈癌患者益处甚微,并可能导致一系列严重并发症。研究表明根治性子宫切除术的完成并不能提高术中检测到盆腔淋巴结受累患者的生存率[5],明确淋巴结状态将决定选择放化疗还是手术作为首选治疗方案,并利于精确设定放疗范围及剂量,降低复发率。因此术前准确评估PLNM 对于实现宫颈癌个性化精准治疗至关重要。
2018年国际妇产科联盟(International Federation of Gynecology and Obstetrics, FIGO)分期指出,不论肿瘤大小与范围,发生PLNM则确定为ⅢC1期,并肯定了影像学对宫颈癌分期的价值[6]。目前,MRI是宫颈癌分期的主要影像学方法,但常规MRI仅能反映病变形态学改变,评估PLNM的准确性不高。动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)、扩散加权成像(diffusion weighted imaging, DWI)等功能性MRI 技术可提供灌注及水分子运动等方面信息,有助于提高评估PLNM 的准确性。基于MRI 的影像组学及深度学习(deep learning, DL)模型通过高通量提取图像内部微观信息实现对病变的精准分析,显示出对PLNM 较高的预测效能。本文综述不同MRI 技术及基于MRI 的智能影像方法对宫颈癌PLNM的诊断效能及优缺点,旨在探索更准确的PLNM 评估方法,进而避免非必要的盆腔淋巴结清扫术,指导临床制订更精准的治疗策略。
MRI 具有多序列、多方位成像、软组织分辨率高的优点[7]。LUO等[8]发现MRI诊断PLNM的敏感度、特异度偏低,分别为75.00%、72.92%。原因是常规MRI 诊断PLNM 的依据是大小和形态学特征。目前PLNM 的大小诊断标准报道不一,多以短径>9 mm 为阈值。但不同部位正常淋巴结大小变异较大,单纯依赖大小评判有无PLNM 准确性很难保证。近期文献[9-10]提倡结合明确的形态学异常进行判定,包括圆形形态、边缘不规则、中心坏死或黏液变及增强呈不均匀强化等。尽管大小与形态学特征结合使诊断准确性有所提高,但仍存在炎症、增生性肿大淋巴结被误诊为转移灶,一些微小阳性淋巴结被忽略的现象,影响了诊断效能。
2023 年美国国立综合癌症网络(National Comprehensive Cancer Network, NCCN)宫颈癌指南推荐采用PET/CT 评价Ⅱ~Ⅳ期患者隐匿的远处淋巴结转移(lymph node metastasis, LNM)[11]。研究表明其检测盆腔及腹主动脉旁LNM 的敏感度和特异度分别为88%和93%、40%和93%[12]。另外,相比于PET/CT,PET/MRI 可同时发挥代谢成像和MRI 的优势。NGUYEN 等[13]报道PET/MRI 诊断盆腹腔LNM 的敏感度、特异度分别为91%、94%。但因PET/MRI 价格昂贵、设备可及性的局限而普及度不高,且目前基于PET/MRI 评价PLNM 的相关研究较少,其价值需进一步验证。
DCE-MRI是一种以T1WI动态增强和双室药代动力学模型为基础的灌注成像技术,通过静脉注射对比剂后对患者行连续多期动态扫描,获取时间-信号强度曲线,由此得到容积转运常数(volume transport constant, Ktrans)、速率常数(rate constant, Kep)、血管外细胞外间隙容积分数(extravascular extracellular volume fraction, Ve)等定量参数,通过对血管和细胞外间隙对比剂交换的定量分析,评价组织灌注与血管内皮的完整性[14]。
ZHANG等[15]发现转移性淋巴结Ktrans、Kep升高,认为与其新生血管密度增加、结构紊乱及通透性增大的病理变化相关,而Ve升高,可能是肿瘤细胞增殖与微坏死的综合结果,其中Ktrans是最准确的定量指标。但KIM 等[16]发现转移性淋巴结的Ktrans值显著降低,当肿瘤较大如ⅠB3期和ⅡA2期时,诊断效果较好,作者推测在病变快速进展期间,细胞增殖超过血管生成可导致灌注不良,即微循环灌注状态会因病变所处阶段不同发生变化;另外,病灶不同区域血管生成不均匀,感兴趣区(region of interest, ROI)内Ktrans值可能会受到病理异质性影响,不能准确反映血流量。以上两点因素及其他造成研究结果差异的可能原因仍需进一步探究。
DWI 是一种可在活体组织内观察水分子微观运动并通过ADC 对水分子扩散速度进行定量评价的功能性成像技术[17]。与正常组织和良性病变相比恶性肿瘤通常细胞增殖较活跃且排列密集,细胞外间隙缩小,因此,水分子扩散受限,DWI信号强度增高,ADC值减低[18]。HE 等[19]根据15 项研究687 例患者的Meta分析发现PLNM组的平均ADC值显著低于未转移组,是辅助诊断LNM 的可靠指标。但恶性淋巴结并非总是被癌细胞完全占据,可能同时包含转移和非转移区域,内部ADC值不均匀。XU等[14]研究认为,使用最小ADC值判断转移性淋巴结更准确,以0.72×10-3mm2/s 作为阈值时,敏感度和特异度分别为83.1%和89.6%,是DWI评估淋巴结有无转移最具代表的标志物。
DWI对转移性淋巴结的检出可有效弥补常规MRI基于形态学诊断的不足。其缺点是图像空间分辨率不够高[20],高b 值在提高对水分子扩散运动敏感性、增加病灶检出率的同时也会降低图像信噪比。另外,常规单指数模型未将微环境血流灌注对DWI的影响排除在外,导致测得的ADC 值大于真实扩散值,在扩散参数精确度上尚存局限性[21]。
体素内不相干运动扩散加权成像(intravoxel incoherent motion diffusion weighted imaging,IVIM-DWI)通过双指数模型可将组织和血管内水分子的扩散进行区分,同时得到两组参数[21],其中,表观扩散系数(apparent diffusion coefficient, ADC)和真扩散系数(true diffusion coefficient, D)对应水分子扩散的程度,而伪扩散系数(pseudo-diffusion coefficient, D*)和灌注分数(perfusion fraction,f)代表微循环灌注情况。IVIM-DWI 对组织扩散特性的定量更为精确,可更准确地反映出肿瘤组织中的细胞密集程度和微循环状况[22]。
WU等[23]发现转移淋巴结D值较高,f值较低,但对PLNM的鉴别能力有限(AUC值小于0.70)。PERUCHO等[24]得出不同结果:随着淋巴结状态从无恶性受累到亚厘米,再到大小显著的盆腔淋巴结受累,原发病变的ADC、D 和f 值降低,表明肿瘤灌注减少和氧合不良促进了LNM 发生。由于影像上与病理结果中的淋巴结一一对应具有挑战性,且淋巴结体积小,易受到人工勾画ROI 误差或邻近组织部分容积效应的影响,因此,该研究的创新之处在于将原发病灶作为ROI。有研究[25]发现宫颈癌原发灶的上皮细胞-间充质转化和肿瘤干细胞表达与LNM密切相关,淋巴结微环境和肿瘤细胞的定向迁移等均受原发灶的调控。此外,原发灶组织病理改变(高间质水压、低氧等)也可促进LNM 的发生[26]。因此,挖掘反映原发灶微环境改变的相关参数可用于预测LNM,并能规避影像与病理上淋巴结一一对应的难题。
扩散张量成像(diffusion tensor imaging, DTI)是在DWI基础上发展的一项新技术,通过在多个方向上分别施加扩散敏感梯度场,对每个体素水分子扩散的各向异性作出准确检测,反映组织细胞密度、纤维束走行等微结构改变。DTI 分析中最常用的参数是各向异性分数(fractional anisotropy, FA),指各向异性部分占总弥散张量之比;另外,平均扩散率(mean diffusivity, MD)代表某一体素内各个方向扩散幅度的平均值,只反映扩散水平整体情况,与方向无关[27]。目前,DTI 主要用于中枢神经系统病变,在宫颈癌中的应用处于初级阶段。YAMADA 等[28]探讨了DTI 评估宫颈癌LNM 的有效性,发现转移性淋巴结的FA 及MD 显著低于非转移性淋巴结,表明病变的侵袭性与其高异质性和高细胞密度有关,提示DTI能够通过反映肿瘤组织微观结构的复杂性为鉴别LNM 提供有用信息。
扩散峰度成像(diffusion kurtosis imaging,DKI)是一种以非高斯分布模型为基础的新型扩散成像技术,利用定量参数来描述实际水分子与理想高斯分布水分子之间扩散位移的偏差,有效反映水分子扩散的不均匀性和受限程度,具有实现组织微观结构异质性量化分析的潜力[29-30]。其中,MD是经非高斯分布校正后的真实扩散系数,MD 值越小代表水分子扩散受限越显著;平均峰度(mean kurtosis, MK)指多个b值下在所有梯度方向上扩散峰度的平均值,反映水分子偏离正态分布的程度,可对ROI内组织微结构的复杂性及异质性进行评价[31-32]。
HUANG 等[33]对61 例宫颈癌患者原发肿瘤DKI 参数进行分析,发现LNM 组MK 值显著高于非转移组,MD值显著低于非转移组,这表明具有高异质性的肿瘤更容易发生PLNM,DKI可作为一种有前景的无创性宫颈癌PLNM预测工具。
酰胺质子转移(amide proton transfer, APT)成像是一种以化学交换饱和转移技术为基础的新兴功能MRI技术,通过检测组织内游离蛋白质的浓度变化,从分子水平反映肿瘤细胞的增殖状况和生理状态[34]。APT 成像的信号强度由酰胺氢质子和自由水氢质子之间交换速率决定,在相对稳定的内环境中,随着蛋白质浓度增加,二者交换速率加快,导致APT信号升高[35]。通过对蛋白质浓度改变进行监测可在早于形态学改变前实现肿瘤细胞增殖能力及病变恶性程度的评估。
基于对组织内游离蛋白质浓度有较高敏感性的优势,APT 成像已成功应用于多种肿瘤的诊断分级、疗效检测等疾病特性的表征[36-38]。CHEN 等[39]关于直肠癌的研究显示,在LNM 组中APT 信号值较高,原因是肿瘤异常增殖需要蛋白质合成,导致细胞内蛋白质积累。HUANG 等[33]在宫颈癌研究中也报道了类似结果,LNM 组中APT 信号明显高于非LNM 组,其预测LNM 的AUC 值为0.807,提示APT 成像具有评估LNM 的潜力;且发现联合APT 与DKI 参数MK 和MD 可进一步提高诊断性能(AUC 值为0.864),敏感度和特异度分别为76.5%和88.6%。表明多参数可实现优势互补,APT和DKI的组合可作为潜在的非侵入性生物标志物来预测宫颈癌LNM。
上述功能MRI 技术的出现使病变微环境改变的量化分析成为可能,在宫颈癌PLNM 的术前评价中具有较大的应用潜能。但其仍存在一些不足,例如:APT 信号会受到核奥式效应(nuclear overhauser effect, NOE)及传统磁化传递效应的干扰[40],DWI、IVIM-DWI、DKI 序列中b 值选取及ROI 勾画方法不同以及各研究中成像序列的参数体系不统一影响了研究结果之间的可比性等,不同功能MRI参数之间的相关性也有待进一步探究。
影像组学通过在大量医学图像中进行高通量成像特征提取并定量分析,寻找病灶的影像学标志物,建立预测模型,为疾病的诊断和预后评价提供依据[41]。主要步骤包括影像数据获取、ROI 勾画和图像分割、特征提取与筛选、模型建立及评估[42]。影像组学能对图像数据中肉眼无法分辨的信息进行更客观全面地分析,突破了传统影像学在评价LNM 方面的限度。
XIA 等[43]基于T2WI 开发的影像组学模型预测PLNM 的AUC 值为0.975,高于传统的形态学标准,在识别淋巴结状况方面具有良好性能;进一步结合基质浸润深度、FIGO 分期和肿瘤最大径等开发的列线图,AUC 值进一步提高,表明临床病理特点的加入可提高模型的预测能力。WANG 等[44]研究发现,与单一T2WI或DWI序列相比,二者联合获得的放射组学特征具有更高的AUC 值,即以多序列MRI 为基础的影像组学能够充分发挥其各自优势,更详细、全面地反映肿瘤异质性信息,为PLNM 提供较为准确的术前无创性评估。
YAN 等[45]发现与鳞状上皮细胞癌抗原(sguamous cell carcinoma associated antigen, SCC-Ag)水平相结合的脂肪抑制(fat saturation, FS)T2WI 影像组学模型比单独的SCC-Ag水平具有更高的预测效果。提示将宫颈癌血清学标志物如SCC-Ag、CA125、CA153、CA199、癌 胚 抗 原(carcinoma embryonic antigen, CEA)等以及反映潜在基因表达或突变状态、潜在治疗靶点的基因组表型加入到组学模型中,或许可提高预测性能。但目前此类研究尚少,其可行性及应用价值需进一步探讨。
近年来,“瘤周”概念逐渐受到关注,有学者将其界定为肿瘤周围半径2.5~5.0 mm(视像素大小而定)的区域[46-48],并发现瘤周组织内功能性淋巴管的生成活跃及淋巴流动异常与LNM密切相关。SHI等[49]在肿瘤边界以1 mm 为间隔向周围扩展,得到瘤周1、2、3、4、5 mm 范围ROI,并得出基于对比增强T1WI 和T2WI 序列中宫颈癌肿瘤周围半径为1 mm 和3 mm 区域的影像组学特征具有最好的预测性能。ZHANG等[50]对T2WI 和DWI 瘤内及瘤周(3 mm,5 mm,7 mm)组学特征进行了研究,发现以瘤周3 mm 内组学特征的AUC值最高,随着瘤周区域的增加,诊断效能并没有依次提高,这提示瘤周范围的扩大会因包含其他组织而导致不相关信息增加,影响预测的有效性。总之,除了瘤内病灶特征外,合理范围内瘤周环境的评价也有一定意义。
影像组学在宫颈癌PLNM的术前预测中显示出良好性能。然而目前仍面临一些挑战:首先,图像采集中不同序列的扫描及成像参数的设定未统一规范;其次,特征提取、筛选、建模流程的设计需优化,以有利于增加模型的可靠性及稳健性;最后,需要建立共享数据库用于大规模多中心的测试及验证,以确保研究结果的鲁棒性与可重复性[51],进而提高其对宫颈癌PLNM进行无创性辅助诊断的应用价值。
DL 的概念来自于人工神经网络的研究,是指利用机器学习算法对多层神经网络中大量样本数据的内在规律进行学习[52]。相比于传统方法,DL 可以高效地提取出图像中的特征信息,并避免了人工勾画ROI 的烦琐及误差,是临床实践中更易于使用的疾病无创评估工具。LIN 等[53]开发并评估了深度神经网络对DWI图像中宫颈癌病灶进行全自动分割的性能,认为基于U-Net 的DL 可准确定位和分割宫颈癌病灶。LIU 等[54]收集了13 个中心1123 例宫颈癌患者的图像数据,开发了基于DL 的列线图,预测PLNM 转移的AUC 值在训练集和验证集分别为0.867 和0.807。表明DL 模型能够在图像中通过对PLNM 特征的自动学习,充分挖掘出PLNM的补充性信息,实现无创性辅助诊断。
DL 进一步克服了传统影像组学手动勾画因主观性、经验缺乏导致的ROI 偏差以及耗时耗力问题,得到的放射学特征具有更高的再现性和鲁棒性,为指导宫颈癌治疗决策提供了自动化且可靠的术前PLNM无创评价工具。但其图像分割勾画的效果依赖于大量高质量样本集的训练,才能确保良好临床应用模型的建立[55]。
PLNM 是影响宫颈癌患者治疗决策和生存预后的关键因素,其术前准确评估是临床急需解决的难题。目前,常规MRI 对PLNM 的评价准确性仍显不足;功能性MRI 技术可从多个维度对淋巴结及原发肿瘤的微环境变化、肿瘤侵袭性等进行更全面评价,提高了PLNM 的诊断准确性,但参数测量的可重复性、阈值的普适性等仍需大量研究进行验证,多模态MRI 的联合应用以及不同序列功能参数间的相关性也值得进一步探讨;基于MRI 的智能影像方法能够高通量提取并分析图像中反映病变异质性的信息,具有广阔的发展前景,图像的自动标准分割、肿瘤三维ROI 勾画及瘤周环境的评价、寻找最佳组合序列等可作为提高准确性的研究思路。在未来,扫描方式及成像参数的规范化、统一化和多中心、大样本量研究的开展,对于探索更准确的PLNM 评价方法至关重要,有助于指导临床早日实现宫颈癌的精准治疗。
作者利益冲突声明:全体作者均声明无利益冲突。
作者贡献声明:康立清确定本研究的具体方向,对稿件重要内容进行了修改;徐晓倩起草和撰写稿件,获取、阅读并分析本研究的相关参考文献;刘凤海获取、阅读并分析本研究的相关参考文献,对稿件重要内容进行了修改,获得了沧州市重点研发计划指导项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。