山东青岛市李沧区实验小学 (266000) 迟晓菲
青岛版教材二年级下册第四单元(如图1)。
图1
1.结合具体情境进一步理解加法和减法的含义;理解三位数加减两、三位数(不进位、不退位)的算理,掌握算法。
2.经历发现问题、提出问题、分析问题、解决问题的过程,体验算法多样化,培养学生初步的抽象概括能力、动手实践能力、运算能力,使学生积累数学活动经验。
3.在合作交流中,培养学生的数学思维;通过解决简单的实际问题,使学生体会数学与生活的密切联系,感受学数学、用数学的乐趣。
掌握三位数加减两、三位数(不进位、不退位)的笔算。
理解笔算的算理。
教具:多媒体课件、计数器、导学单。学具:计数器、铅笔、直尺。
师:同学们,春天来了,小蜜蜂们都去采蜜了。仔细观察图1,你能发现什么数学信息?
生1:一队有320只小蜜蜂去杏园。二队有210只小蜜蜂去苹果园。
师:根据这些信息,你能提出什么数学问题?
生1:一队和二队一共有多少只小蜜蜂?
生2:二队比一队少多少只小蜜蜂?
【评析】让学生用“数学的眼光”去观察,引导学生提出问题,进入本节课的初始思考阶段。将生活问题转化为数学问题,让学生感受数学与生活的联系,体会数学来源于生活,增强他们的问题意识和应用意识。
1.结合意义,列出算式
师:要解决“一队和二队一共有多少只小蜜蜂?”这个数学问题,需要用到什么数学信息?谁能把信息和问题连起来说一遍?
生1:一队有320 只小蜜蜂,二队有210 只小蜜蜂,一队和二队一共有多少只小蜜蜂?
师:表述真清晰!怎样列式?
生1:320+210。
师(板书):为什么要用加法?
生1:把一队和二队的小蜜蜂只数合起来就要用加法计算。
师:观察一下,这个算式和我们以前学的有什么不同?
生2:以前学的是两位数加两位数,这是三位数加三位数。
2.自主探索,尝试计算
师:回想两位数加两位数的计算,三位数加三位数你想怎么计算?
生3:用竖式计算。
生4:口算。
生5:用拨计数器的方法计算。
师:你们知道的方法可真多!选择你喜欢的方法,小组一起探究。
3.合作交流,感知算法
师:谁来交流?
生6:32 个十加21 个十等于53 个十,53 个十是530。
师:生6 把320 和210 分别看作32 个十和21 个十,将算式转化为两位数加两位数的口算。谁有不同的口算方法?
生7:3 个百加2 个百是5 个百,2 个十加1 个十是3个十,5个百加3个十是530。
(板书:300+200=500,20+10=30,500+30=530)
师:把320和210根据数的组成拆分,转化成整百数加整百数、整十数加整十数的口算。看来转化是一种重要的数学思想。
【评析】学生的学习活动应当是一个生动活泼、主动和富有个性的过程。本环节中,教师在分析解决三位数加三位数的计算时,引导学生回忆以前学习两位数加两位数的计算方法,使其运用转化思想将三位数加三位数转化成两位数加两位数,或转化成整百数加整百数、整十数加整十数的口算,利用已有的知识经验来解决新问题,降低了问题的难度。
4.沟通优化,提升算法
师:谁是用拨计数器的方法计算的?
生8:我先拨320,在百位上拨3个珠子,在十位上拨2 个珠子;再拨210,在百位上拨2 个珠子,在十位上拨1个珠子。合起来就是530(如图2)。
图2
师:其他同学有什么想问的吗?
生9:为什么百位上的后2 个珠子要和前3 个珠子拨在一起?为什么十位上的后1 个珠子要和前2个珠子拨在一起?
生8:因为这是加法计算,所以相同数位上的珠子要拨在一起。
师:还有不同的方法吗?
生10:我用列竖式的方法,相同数位对齐(如图3)。
图3
师:你们有什么想问生10的吗?
生11:为什么3 和2 对齐?2 和1对齐?
生10:因为3 和2 在百位上,都表示几个百;1和2在十位上,都表示几个十。
师:530中的3和5分别表示什么?怎么得来的?
生12:3 表示3 个十,2 个十加1 个十得3 个十;5表示5个百,3个百加2个百得5个百。
师:数形结合可以帮助我们更加形象地理解问题(如图4)。用竖式计算时要注意什么?
图4
生(齐):相同数位对齐,从个位算起。
【评析】在上述教学中,学生用拨计数器的方法,直观、形象地解决加法计算问题。在列竖式计算时,教师带领学生规范书写竖式,同时结合计数器,将“数”与“形”建立紧密的联系,进而渗透数形结合思想。
5.类比迁移,探究减法
师:我们再来解决“二队比一队少多少只小蜜蜂?”这个问题,谁来列式?
生13:320-210。
师:怎样解决?谁来板演?
生14:我是用竖式计算的,相同数位对齐,先算个位,0-0=0,再算十位,2-1=1,最后算百位,3-2=1,合起来是110。
师:你说得真完整。关于这个竖式,你有要提醒大家注意的地方吗?
生14:计算时相同数位要对齐,从个位算起。
师:这是非常关键的一点。同学们,你们认为还有什么要注意的吗?
生(齐):还要注意看清加减号。
6.仿例练习,迁移运用
师(出示图5):有两名同学在玩“抽卡片列算式”的游戏。仿照游戏,谁和同桌来试一试?
生15:我抽出卡片550和340。
生16:我列算式为550+340=890,550-340=210。
师:你是怎么算的?
生16:55 个十加34 个十是89 个十,89 个十是890;55个十减34个十是21个十,21个十是210。
【评析】《义务教育数学课程标准(2022 年版)》指出,要让学生经历数学思考、迁移运用等学习过程,体会数学是认识、理解、表达真实世界的工具、方法和语言。上述教学中,教师引导学生在三位数加法的基础上再次进行类比推理,认识到三位数的减法的算理与之本质是一样的,进而真正掌握三位数减法的算法。
7.类比沟通,促进发展
(1)迁移算理,尝试计算
师:一队和二队的小蜜蜂去采蜜了,三队的小蜜蜂也不甘落后(如图1),三队有多少只小蜜蜂?
生(齐):86只。
师:三队有86只小蜜蜂,二队有210只小蜜蜂,根据这两个信息,你能提出一个数学问题吗?
生17:二队和三队一共有多少只小蜜蜂?
师:怎样列式?
生18:210+86。
师:仔细观察,这个算式有什么特点?
生19:是三位数加两位数。
师(补充课题):这是我们今天要进一步研究的内容——“三位数加减两位数(不进位、不退位)的笔算”。怎样计算呢?迁移的思想可以帮助我们更好地解决问题。请类比三位数加减三位数的计算,再次小组合作探究。
(2)合作交流,理解算理
生20(上前板演):相同数位对齐,先算个位,0+6=6,再算十位,1+8=9,最后把百位上的2 落下来,合起来是296(如图6)。
图6
生21(质疑):8 为什么要和1 对齐,而不是和2对齐?
生20:8和1都表示几个十,所以都要写在十位上。
师(出示图7):让我们借助计数器来理解。计数器上已拨出210,你能把计数器补充完整吗?
图7
生22:在十位上再拨8 个珠子,个位上拨6 个珠子(如图8)。
图8
师(小结):同样是相同数位上的数才能相加,数形结合让我们理解起来更简单。
(3)正向迁移,融会贯通
师(出示499-77):计算并解释算理。
生23:相同数位对齐,先算个位,9-7=2,再算十位,9-7=2,最后把百位上的4 落下来,合起来是422。
师:422 中两个2 表示的意思一样吗?分别是怎么得来的?
生24:个位上的2 表示2 个一,9 个一减7 个一得2个一;十位上的2表示2个十,9个十减7个十得2个十。
师(小结):同一个数字在不同数位上表示的意思不同。
【评析】让学生经历质疑互动过程,可培养学生的问题意识和合作交流能力。学生根据前两个问题的学习,自主探究,迁移知识。在探究中,学生由借助学具操作层面提升到算法层面,加深了对算理的理解。
第一关:列竖式计算。
29+540=857-37=634+205=
师:我们了解了三位数加减两、三位数的笔算,那么四位数加减四位数的笔算,你知道要注意什么吗?
生(齐):相同数位对齐,从个位算起。
[学生总结出竖式模型(如图9)]
图9
第二关:辨对错。
(学生认为只有第一个竖式是正确的)
师(追问):第二个和第三个竖式分别错在哪里?
生(齐):第二个竖式错在相同数位没有对齐,第三个竖式错在没有看清加减号。
【评析】通过练习巩固计算方法,有助于提升学生的计算能力。学生总结出竖式模型,说明学生会用“模型意识和模型观念”这样的数学思维表述多位数加减法竖式,会用数学语言表达与交流。
师:这节课接近尾声了,你有哪些收获?
生1:我学会了三位数加减两、三位数的笔算。
生2:列竖式计算时,相同数位对齐,从个位算起。
生3:我学会了和小组内的同学合作学习。
生4:我学会了转化和数形结合的思想。
……
【评析】《义务教育数学课程标准(2022 年版)》指出,要让学生经历数学表达、概括归纳等学习过程,树立学好数学的信心,养成良好的学习习惯。本环节引领学生从多方面回顾梳理,帮助学生总结基本的数学活动经验,使学生在获得数学知识的同时,加深对数学思想方法的理解。