贾闵羽
摘要:在乳腺癌的研究中,尽管雄激素受体(AR) 在三阴性乳腺癌 (TNBC)中的预后价值存在争议,但已有研究表明,缺乏AR表达会加剧疾病进展。并且在TNBC亚型中,与AR(+)TNBC相比,AR(-)TNBC会因缺乏预后生物标志物和治疗靶点更具侵袭性。随着磷脂酰肌醇3-激酶/蛋白激酶B、S期激酶相关蛋白2信号通路等新型治疗靶点以及新兴免疫疗法的深入研究,TNBC的治疗可选择方案也在不断增加。关于AR在TNBC中的作用机制,目前AR(-)TNBC肿瘤生物学的研究和新的生物标志物的文献仍然很少。本文总结了AR在TNBC中的研究现状,提出了TNBC未来研究的途径、潜在生物标志物和治疗策略。
关键词:三阴性乳腺癌;雄激素受体;雄激素受体拮抗剂;肿瘤生物标志物
中图分类号: R737.9文献标志码: A文章编号:1000-503X(2023)02-0303-08
DOI:10.3881/j.issn.1000-503X.14943
Research Progress in Androgen Receptor and Triple Negative Breast Cancer
JIA Minyu
ABSTRACT:The research on androgen receptor (AR) in breast cancer is advancing.Although the prognostic value of AR in triple negative breast cancer (TNBC) is controversial,a variety of studies have demonstrated that the lack of AR expression exacerbates disease progression.Moreover,the TNBC subtype of AR(-) is more aggressive than that of AR(+) due to the lack of prognostic biomarkers and therapeutic targets.With the discovery and deepening research of novel therapeutic targets such as phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin and S-phase kinase-associated protein 2 signaling pathways,as well as the emerging of immunotherapies,the treatment options for TNBC are increasing.Regarding the role of AR in TNBC,the studies about the tumor biology of AR(-)TNBC and novel biomarkers for improved management of the disease remain insufficient.In this review,we summarize the research progress of AR in TNBC,put forward avenues for future research on TNBC,and propose potential biomarkers and therapeutic strategies that warrant investigation.
Key words:triple negative breast cancer;androgen receptor;androgen receptor antagonist;tumor biomarker
Acta Acad Med Sin,2023,45(2):303-310
三阴性乳腺癌(triple negative breast cancer,TNBC)是指雌激素受体(estrogen receptor,ER)、孕激素受体(progesterone receptor,PR)和人表皮生长因子受体2(human epidermal growth factor receptor 2,HER2)均阴性的一种乳腺癌亚型[1]。TNBC是一种高度恶性乳腺癌,因其缺乏特定分子靶点(ER和HER2),内分泌和抗HER2治疗对其无效,化疗被认为是目前唯一有效的治疗方式。尽管TNBC具有更高的化疗敏感性,但晚期患者化疗后复发是目前亟待解决的问题[2-3]。因为确定可靠的预后生物标志物和新的治疗靶点具有非常重要的临床意义,所以目前更多的研究转向在乳腺癌中阳性表达位居第3(70%~90%)的雄激素受體(androgen receptor,AR) 上[4]。
根据AR表达,TNBC可细分为AR(+)TNBC和AR(-)TNBC。与其他非TNBC的乳腺癌亚型相比,TNBC侵袭性更强,预后更差,在确诊后5年内局部复发率和远处转移率更高[5]。有证据表明,包括种族、年龄、体重指数、社会地位、高脂饮食等在内的非生物因素也是TNBC的重要病因,个体差异和肿瘤的明显异质性使得TNBC治疗更具有挑战性[1,6]。为了实现精准治疗,依据基因表达将TNBC分为4种不同的分子亚型,包括2种基底样亚型(basal-like subtype,BL1和BL2)、间充质型和管腔雄激素受体型(luminal androgen receptor,LAR)[7]。一项回顾性分析显示,不同亚型对新辅助化疗的反应有显著差异,LAR的反应较差,而BL1的反应较好[8]。
进一步研究发现,AR在乳腺癌中的阳性表达率介于7%~75%[9]。目前正在进行临床试验的AR拮抗剂,如苯扎鲁胺和比卡鲁胺,在AR(+)的TNBC患者中取得较好的结果,越来越多的证据支持AR是AR(+)TNBC的治疗靶点[10-12]。然而,其余缺乏AR表达的TNBC,不能从AR拮抗剂中受益。有研究显示,与AR(+) TNBC患者相比,AR(-)TNBC的预后更差[13-14]。
AR(-)TNBC在分子和基因组成上与AR(+)TNBC不同,需要对AR的作用机制进行更深入的研究。本文总结了AR在乳腺癌中的研究现状,以及 AR(-)TNBC可能存在的靶点,为TNBC治疗方案及管理提供新方向与新思路。
AR与TNBC
AR是一种Ⅰ型核受体,属于类固醇激素受体家族的成员。在不同性别的各种组织中AR都有表达,在女性中扮演着重要的角色[15],敲除AR基因的小鼠表现出排卵功能障碍和卵泡生长受损,进一步证实在正常生育中AR是不可或缺的[16]。此外,雄激素在女性乳房发育中起重要作用,女性卵巢和肾上腺合成睾酮,睾酮在乳腺组织中转化为双氢睾酮或17-雌二醇,分别与AR或ER-α结合,起抑制或刺激乳腺细胞增殖的作用[17]。研究表明,睾酮优先转化为双氢睾酮,在缺乏雌激素的情况下,被代谢为17-雌二醇,维持乳腺内的荷尔蒙平衡。敲除AR基因的小鼠表现出乳腺上皮细胞及导管增殖减缓[18]。种种研究表明AR在正常乳腺组织发育中发挥作用。
4种不同的TNBC分子亚型中,在LAR中AR表达较高,且对AR靶向治疗更敏感[19]。但AR对TNBC的预后作用尚无定论,一些基于免疫组织化学的研究证实AR(+)TNBC预后较好[20-21];也有研究显示AR表达增强,但TNBC仍有较差的预后[22-24];更有研究发现AR与TNBC预后没有直接的相关性[25-28]。这些差异可能是由于研究中样本获取方法、染色、计分方法、抗体和AR阳性分界值不同造成的[29]。一项多机构研究通过评估不同人群中AR的表达发现,即使排除上述因素,预后差异性仍然存在[30],这种差异性可能是由于AR转录过程中的结构重排或选择性剪接而产生的AR剪切变异体(AR splice variants,AR-Vs)造成的[31]。到目前为止,已发现15种不同的AR-Vs[31-33]。 AR-V7亚型是目前研究的热点,其表达与预后不良相关[34-35]。研究不同的AR-Vs可能是解决TNBC患者中AR表达差异性的关键。此外,研究显示AR(+)(无论表达高低)可促进肿瘤干细胞的生长,导致化疗耐药和肿瘤复发[20]。
AR(-)TNBC治疗靶点的检测 蛋白质及基因表达测序可为AR(+) TNBC提供新的治疗靶点[36],但遗憾的是,目前对AR(-)TNBC全基因组差异的研究极少。那些在AR(+) TNBC中过度表达的药物靶点能否在AR(-)TNBC中表达还需要进一步研究。与AR(+) TNBC相比,AR(-)TNBC中表皮生长因子受体和拓扑异构酶Ⅱα的表达更高,受体酪氨酸激酶和胸苷酸合成酶(thymidylatesynthase,TS)的表达也显著更高[37]。已有研究证实,在AR(+) TNBC中受体酪氨酸激酶[38]与胸苷酸合成酶[39]水平较其余亚型显著升高,并提示其预后较差。对AR(-)乳腺癌的进一步检测发现,一些免疫相关基因也存在差异表达,包括E2F1、PDK1、CCL2、CEBPB、NFKBIL2、TGFB3、IL12RB2、IL2RA和SOS1[40]。
E2F1与血管生成标志物 E2F1是参与G1/S转换,导致乳腺癌转移的主要调节因子[41]。已有研究表明,E2F1影响缺氧和血管生成两个癌症生成的信号通路,E2F1促进血管内皮生长因子(vascular endothelial growth factor,VEGF)调节血管生成[42],而表皮生长因子受体对VEGF的上调在AR(-)TNBC中高于AR(+)TNBC[43-44]。在转移性乳腺癌和TNBC临床试验中,VEGF抑制剂(如贝伐单抗)联合化疗或其他药物可明显改善患者无病生存期及总生存期(overall survive,OS)[45]。除VEGF外,其他血管生成標志物,如成纤维细胞生长因子、缺氧诱导因子(hypoxia-inducible factor,HIF)和胰岛素生长因子等作为AR(-)TNBC潜在治疗靶点,需进一步研究其作用机制。
缺氧介质 为了适应缺氧,肿瘤中的HIF-1α和HIF-2α和碳酸酐酶IX(carbonic anhydrase IX,CAIX)表达上调,参与细胞存活、增殖、血管生成、侵袭、转移等[46-47],并在TNBC中表达较高[48-49]。CAIX高表达与AR(-)/ER(-)患者的无病生存期、OS较差相关[50]。HIF-1α下调促进细胞凋亡,降低细胞侵袭性和迁移能力,抑制CAIX的表达促进原位乳腺肿瘤消退[51]。有关HIF和CAIX抑制剂和单克隆抗体目前正在进行早期临床测试,以明确在缺氧诱导蛋白作用下AR(+)TNBC和AR(-)TNBC之间是否存在差异,可确定靶向HIF1-α和CAIX是否对AR(-)TNBC有效[57]。
3-磷脂酰肌醇依赖的蛋白激酶-1 3-磷脂酰肌醇依赖的蛋白激酶-1(3-phosphoinositide-dependent protein kinase-1,PDK-1)是PI3K的下游效应器,依赖磷脂酰肌醇3-激酶-蛋白激酶B(phosphatidylinositol 3 kinase,PI3K/protein kinase B,PKB)信号途径在肿瘤发挥作用[40];但在乳腺癌中,PDK-1是以PI3K/PKB 不依赖的方式激活的[52],研究表明PDK-1的缺失可以延缓肿瘤进展和转移[53],并且通过PI3K/PKB途径参与乳腺癌分子亚型的获得性耐药机制,诱导TNBC化疗耐药[54-55]。GSK2334470(英国制药公司葛兰素史克)、OXIDs(拉波塞利实验室)和MP7(默克公司)等PDK-1抑制剂[55],有望成为AR(-)TNBC新的治疗药物。
Micro-RNA 通过研究153个在AR(-)TNBC和AR(+)TNBC分子亚型之间差异表达的微小RNA (microRNA,miRNA),显示miRNA参与肿瘤细胞增殖和侵袭的几条信号通路[56]。另一項使用TCGA数据的研究发现了40个在AR(-)TNBC中差异表达的miRNA,这些miRNA与种族和乳腺癌分子亚型相关[57]。目前正在开发的miRNA模拟物和miRNA抑制剂,可用于治疗癌症和其他疾病。识别出AR(-)TNBC特异性的miRNA可能改善TNBC检测指标及预后评价。
转录因子 CCAAT增强子结合蛋白β是一种调控炎症反应的转铁蛋白,通过参与19miRNA (C19MC)的表达,而间接参与TNBC发生[36]。CCAAT增强子结合蛋白β在缺氧条件下诱发进一步证实缺氧在AR(-)TNBC中起重要作用[58]。通过对TCGA数据集的分析,发现17个在TNBC中上调的TF,如同源盒蛋白转录因子Engrailed-1(EN1)的下调显著降低TNBC存活率[59]。此外,EN1高表达促进AR(-)TNBC细胞的增殖和迁移,与脑转移和OS不良相关[60]。EN1的多功能纳米颗粒用于治疗耐药TNBC已取得良好结果[61],AR(-)TNBC作为一种特殊类型的TNBC,可能也同样有效。
S期激酶相关蛋白2 S期激酶相关蛋白2(S-phase kinase-associated protein 2 Skp-2)作为泛素连接酶复合体的一部分,参与p21、p27和p57(属于细胞周期蛋白依赖性激酶抑制剂)等蛋白的降解,在S期参与DNA复制[62]。与非TNBC相比,Skp-2是TNBC中表达的关键基因之一[36],但Skp-2在AR(-)TNBC和AR(+)TNBC中差异性表达机制尚不清楚。研究已证实AR是前列腺癌中Skp-2的上游调节因子,Skp-2过度表达导致AR活性降低[63-65]。这一研究为Skp-2成为AR(-)TNBC治疗靶点奠定了基础,需要进一步研究证实其有效性。
免疫治疗 趋化因子基因CCL-2通过促进单核细胞和肿瘤相关巨噬细胞(tumor-associated macrophage,TAM)参与肿瘤的发生和发展[66]。CCL-2的过度表达与肿瘤患者预后不良有关,但使用CCL-2的抗体进行干预并没有达到预期效果[67]。TAM和肿瘤相关中性粒细胞在TNBC中明显高于非TNBC[68-69]。目前已知TAM和肿瘤相关中性粒细胞参与抗肿瘤免疫,但它们也可以转变为亲肿瘤细胞表型[70]。与AR (+)TNBC相比,AR(-)TNBC中CD4+和CD8+T细胞标志以及程序性死亡受体-1、程序性死亡受体-配体1(programmed cell death-Ligand 1,PD-L1)和细胞毒性T淋巴细胞相关蛋白4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)的表达显著升高[40]。除了PD-L1抑制剂,针对CTLA-4和淋巴细胞活化基因-3的免疫检查点抑制剂,如易普利姆玛(ipilimumab)等正在进行的Ⅲ期和Ⅰ/Ⅱ期临床试验[71]。系统研究AR(-)TNBC免疫状况对于后期免疫治疗非常有价值。
AR与TNBC的治疗
比卡鲁胺、恩扎鲁胺作为AR靶向治疗第1、2代药物,抗肿瘤效果取得阳性结果[9,72]。比卡鲁胺耐药的患者通常对恩扎鲁胺更敏感[73-74]。达鲁他胺是一种新型AR拮抗剂,能够在抗雄激素治疗中阻断突变AR的活性,特别是雄激素相关配体结合域中对苯扎鲁胺耐药的F876L突变,并且不会引起血清睾酮水平增加,其穿透血脑屏障的作用也可以忽略不计[75]。新型AR拮抗剂,如奥特龙、醋酸阿比特龙和VT-464均属于细胞色素P450c17α抑制剂,分别作用于雄激素生成和加工过程,从而抑制TNBC和HER-2(+)乳腺癌中肿瘤细胞的生长,在患者临床获益率及中位无进展生存期取得阳性结果[76-77]。
一些新型AR拮抗剂也正在开发中。研究表明,选择性AR调节剂能够在5周内将肿瘤重量减少90%,并减少肿瘤诱导的恶病质[78]。新型口服非甾体选择性AR调节剂、GTx-024对雄激素作用减弱,对体外和体内的乳腺癌细胞生长具有抑制作用[79]。此外,GT0918可以有效抑制 AR(+)乳腺肿瘤的生长,并且耐受性良好,因此可能为 AR 阳性乳腺癌提供临床益处[80]。
展望
AR(-)TNBC可能是较AR(+)TNBC更具侵袭性、预后更差的分子亚型。目前的研究显示,将TNBC视为一种亚型是对这种复杂疾病的狭隘看法。评估乳腺癌中生物标志物的差异性,有利于发现TNBC独有的治疗靶点。有证据表明,AR(-)TNBC具有高度的增殖和免疫原性,可能从化疗和免疫治疗中获益,但其对紫杉烷类的耐药也很明显。因此,化疗联合AR(-)TNBC相关标志物药物,可能会改善预后。
绝大多数标志物可以通过免疫组织化学等方法进行评估。血液中的循环肿瘤细胞,是转移性肿瘤中检测AR的方法之一,可用于随访和治疗期间评估乳腺癌患者AR的差异表达[77,81-82]。乳腺癌循环肿瘤细胞还可用来评估AR-V7的表达,其表达与骨转移增加有直接关系,也可能成为预测阿比特龙和苯扎鲁胺疗效的指标[34]。除了AR蛋白的表达,AR基因表达特征和AR磷酸化状态可能是预测AR靶向治疗有效的预测因子[83-84]。在前列腺癌中,血清、血浆、尿液中AR浓度已证实与诊断和预测预后有关[85]。
AR表达的分界值是AR(-)TNBC患者制定治疗方案的关键,但目前尚未制定AR状态评估的专家共识。在许多研究中,暂且将美国临床肿瘤学会/美国病理学家学院指南用于AR。解决这一问题需要使用更可靠的雄激素驱动基因信号来检测AR水平,确定AR依赖蛋白(可能因乳腺癌亚型不同而有所不同)将更好地揭示AR作用机制和预后价值。免疫疗法如程序性死亡受体-1、PD-L1和CTLA-4,靶向TAM或将巨噬细胞引导至肿瘤微环境的细胞因子也是癌症治疗的潜在目标,将成为具有免疫特征的AR(-)TNBC患者的选择[67,86]。
目前,传统的靶向治疗不能用于TNBC亚型患者,寻求该类患者有效的治疗方法是目前面临的挑战之一。随着研究水平的不断发展,特异性靶点的筛选及靶向药物的研究,将会为现有乳腺癌分型及治疗带来新的啟示。
参 考 文 献
[1]Bianchini G,Balko JM,Mayer IA,et al.Triple-negative breast cancer:challenges and opportunities of a heterogeneous disease[J].Nat Rev Clin Oncol,2016,13(11):674-690.DOI:10.1038/nrclinonc.2016.66.
[2]Bonotto M,Gerratana L,Poletto E,et al.Measures of outcome in metastatic breast cancer:insights from a real-world scenario[J].Oncologist,2014,19(6):608-615.DOI:10.1634/theoncologist.2014-0002.
[3]Kohler BA,Sherman RL,Howlader N,et al.Annual report to the nation on the status of cancer,1975-2011,featuring incidence of breast cancer subtypes by race/ethnicity,poverty,and state[J].J Natl Cancer Inst,2015,107(6):djv048.DOI:10.1093/jnci/djv048.
[4]Traina TA,Miller K,Yardley DA,et al.Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer[J].J Clin Oncol,2018,36(9):884-890.DOI:10.1200/JCO.2016.71.3495.
[5]Malorni L,Shetty PB,De Angelis C,et al.Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up[J].Breast Cancer Res Treat,2012,136(3):795-804.DOI:10.1007/s10549-012-2315-y.
[6]Wright N,Rida PCG,Aneja R.Tackling intra- and inter-tumor heterogeneity to combat triple negative breast cancer[J].Front Biosci (Landmark Ed),2017,22:1549-1580.DOI:10.2741/4558.
[7]Lehmann BD,Jovanovic B,Chen X,et al.Refinement of triple-negative breast cancer molecular subtypes:implications for neoadjuvant chemotherapy selection[J].PLoS One,2016,11(6):e0157368.DOI:10.1371/journal.pone.0157368.
[8]Echavarria I,Lopez-Tarruella S,Picornell A,et al.Pathological response in a triple-negative breast cancer cohort treated with neoadjuvant carboplatin and docetaxel according to lehmanns refined classification[J].Clin Cancer Res,2018,24(8):1845-1852.DOI:10.1158/1078-0432.CCR-17-1912.
[9]Hon JD,Singh B,Sahin A,et al.Breast cancer molecular subtypes:from TNBC to QNBC[J].Am J Cancer Res,2016,6(9):1864-1872.
[10]Barton VN,Damato NC,Gordon MA,et al.Androgen receptor biology in triple negative breast cancer:a case for classification as AR+ or quadruple negative disease[J].Horm Cancer,2015,6(5-6):206-213.DOI:10.1007/s12672-015-0232-3.
[11]Caiazza F,Murray A,Madden SF,et al.Preclinical evaluation of the AR inhibitor enzalutamide in triple-negative breast cancer cells[J].Endocr Relat Cancer,2016,23(4):323-334.DOI:10.1530/ERC-16-0068.
[12]Traina TA,Miller K,Yardley DA,et al.Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer[J].J Clin Oncol,2018,36(9):884-890.DOI:10.1200/JCO.2016.71.3495.
[13]He J,Peng R,Yuan Z,et al.Prognostic value of androgen receptor expression in operable triple-negative breast cancer:a retrospective analysis based on a tissue microarray[J].Med Oncol,2012,29(2):406-410.DOI:10.1007/s12032-011-9832-0.
[14]Luo X,Shi YX,Li ZM,et al.Expression and clinical significance of androgen receptor in triple negative breast cancer[J].Chin J Cancer,2010,29(6):585-590.DOI:10.5732/cjc.009.10673.
[15]Zhou X.Roles of androgen receptor in male and female reproduction:lessons from global and cell-specific androgen receptor knockout (ARKO) mice[J].J Androl,2010,31(3):235-243.DOI:10.2164/jandrol.109.009266.
[16]Walters KA,Simanainen U,Handelsman DJ.Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models[J].Hum Reprod Update,2010,16(5):543-558.DOI:10.1093/humupd/dmq003.
[17]Dimitrakakis C,Zhou J,Wang J,et al.A physiologic role for testosterone in limiting estrogenic stimulation of the breast[J].Menopause,2003,10(4):292-298.DOI:10.1097/01.GME.0000055522.67459.89.
[18]Yeh S,Hu YC,Wang PH,et al.Abnormal mammary gland development and growth retardation in female mice and MCF7 breast cancer cells lacking androgen receptor[J].J Exp Med,2003,198(12):1899-1908.DOI:10.1084/jem.20031233.
[19]Lehmann BD,Bauer JA,Chen X,et al.Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies[J].J Clin Invest,2011,121(7):2750-2767.DOI:10.1172/JCI45014.
[20]Asano Y,Kashiwagi S,Goto W,et al.Expression and clinical significance of androgen receptor in triple-negative breast cancer[J].Cancers (Basel),2017,9(1):4.DOI:10.3390/cancers9010004.
[21]Kucukzeybek BB,Bayoglu IV,Kucukzeybek Y,et al.Prognostic significance of androgen receptor expression in HER2-positive and triple-negative breast cancer[J].Pol J Pathol,2018,69(2):157-168.DOI:10.5114/pjp.2018.76699.
[22]Choi JE,Kang SH,Lee SJ,et al.Androgen receptor expression predicts decreased survival in early stage triple-negative breast cancer[J].Ann Surg Oncol,2015,22(1):82-89.DOI:10.1245/s10434-014-3984-z.
[23]Constantinou C,Papadopoulos S,Karyda E,et al.Expression and clinical significance of claudin-7,PDL-1,PTEN,c-Kit,c-Met,c-Myc,ALK,CK5/6,CK17,p53,EGFR,Ki67,p63 in triple-negative breast cancer-a single centre prospective observational study[J].In Vivo,2018,32(2):303-311.DOI:10.21873/invivo.11238.
[24]Guiu S,Mollevi C,Charon-Barra C,et al.Prognostic value of androgen receptor and FOXA1 co-expression in non-metastatic triple negative breast cancer and correlation with other biomarkers[J].Br J Cancer,2018,119(1):76-79.DOI:10.1038/s41416-018-0142-6.
[25]Zaborowski M,Pearson A,Sioson L,et al.Androgen receptor immunoexpression in triple-negative breast cancers:is it a prognostic factor[J].Pathology,2019,51(3):327-329.DOI:10.1016/j.pathol.2018.09.063.
[26]Nimeus E,Folkesson E,Nodin B,et al.Androgen receptor in stage I-II primary breast cancer-prognostic value and distribution in subgroups[J].Anticancer Res,2017,37(12):6845-6853.DOI:10.21873/anticanres.12146.
[27]Liu YX,Zhang KJ,Tang LL.Clinical significance of androgen receptor expression in triple negative breast cancer-an immunohistochemistry study[J].Oncol Lett,2018,5(6):10008-10016.DOI:10.3892/ol.2018.8548.
[28]Jongen L,Floris G,Wildiers H,et al.Tumor characteristics and outcome by androgen receptor expression in triple-negative breast cancer patients treated with neo-adjuvant chemotherapy[J].Breast Cancer Res Treat,2019,176(3):699-708.DOI:10.1007/s10549-019-05252-6.
[29]Vera-Badillo FE,Templeton AJ,De-Gouveia P,et al.Androgen receptor expression and outcomes in early breast cancer:a systematic review and meta-analysis[J].J Natl Cancer Inst,2014,106(1):djt319.DOI:10.1093/jnci/djt319.
[30]Bhattarai S,Klimov S,Mittal K,et al.Prognostic role of androgen receptor in triple negative breast cancer:a multi-institutional study[J].Cancers (Basel),2019,11(7):995.DOI:10.3390/cancers11070995.
[31]Dehm SM,Tindall DJ.Alternatively spliced androgen receptor variants[J].Endocr Relat Cancer,2011,18(5):R183-R196.DOI:10.1530/ERC-11-0141.
[32]Zhan Y,Zhang G,Wang X,et al.Interplay between cytoplasmic and nuclear androgen receptor splice variants mediates castration resistance[J].Mol Cancer Res,2017,15(1):59-68.DOI:10.1158/1541-7786.MCR-16-0236.
[33]Liu C,Armatrong CM,Ning S,et al.ARVib suppresses growth of advanced prostate cancer via inhibition of androgen receptor signaling[J].Oncogene,2021,40(35):5379-5392.DOI:10.1038/s41388-021-01914-2.
[34]Antonarakis ES,Lu C,Wang H,et al.AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer[J].N Engl J Med,2014,371(11):1028-1038.DOI:10.1056/NEJMoa1315815.
[35]Hickey TE,Robinson JL,Cllarro JS,et al.Minireview:The androgen receptor in breast tissues:growth inhibitor,tumor suppressor,oncogene[J].Mol Endocrinol,2012,26(8):1252-1267.DOI:10.1210/me.2012-1107.
[36]Naorem LD,Muthaiyan M,Venkatesan A.Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer[J].J Cell Biochem,2019,120(4):6154-6167.DOI:10.1002/jcb.27903.
[37]Xiu J,Obeid E,Gatalica Z,et al.Abstract P3-07-26:biomarker comparison between androgen receptor-positive-triple-negative breast cancer (AR+ TNBC) and quadruple-negative breast cancer(QNBC)[J].Cancer Res,2016,76(4 Supplement):P3-07-26.DOI:10.1158/1538-7445.SABCS15-P3-07-26.
[38]Rahimi M,Behjati F,Hamid-Reza KK,et al.The relationship between KIT copy number variation,protein expression,and angiogenesis in sporadic breast cancer[J].Rep Biochem Mol Biol,2020,9(1):40-49.DOI:10.29252/rbmb.9.1.40.
[39]Dass SA,Tan KL,Selva R,et al.Triple negative breast cancer:a review of present and future diagnostic modalities[J].Medicina (Kaunas),2021,57(1):62.DOI:10.3390/medicina57010062.
[40]Davis M,Tripathi S,Hughley R,et al.AR negative triple negative or “quadruple negative breast cancers in African American women have an enriched basal and immune signature[J].PLoS One,2018,13(6):e0196909.DOI:10.1371/journal.pone.0196909.
[41]Hollern DP,Swiatnicki MR,Rennhack JP,et al.E2F1 drives breast cancer metastasis by regulating the target gene FGF13 and altering cell migration[J].Sci Rep,2019,9(1):10718.DOI:10.1038/s41598-019-47218-0.
[42]Goody D,Gupta SK,Engelmann D,et al.Drug repositioning inferred from E2F1-coregulator interactions studies for the prevention and treatment of metastatic cancers[J].Theranostics,2019,9(5):1490-1509.DOI:10.7150/thno.29546.
[43]Wang C,Li J,Ye S,et al.Oestrogen inhibits VEGF expression and angiogenesis in triple-negative breast cancer by activating GPER-1 [J].J Cancer,2018,9(20):3802-3811.DOI:10.7150/jca.29233.
[44]Wang L,Aatone M,Alam SK,et al.Suppressing STAT3 activity protects the endothelial barrier from VEGF-mediated vascular permeability[J].Dis Model Mech,2021,14(11):dmm 049029.DOI:10.1242/dmm.049029.
[45]姜戰胜,潘李.贝伐珠单抗治疗三阴性乳腺癌相关进展[J].中国肿瘤临床,2015,2015:716-719.DOI:10.3969/j.issn.1000-8179.20150579.
[46]Semenza GL.Hypoxia-inducible factors:coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype[J].EMBO J,2017,36(3):252-259.DOI:10.15252/embj.201695204.
[47]Koyasu S,Kobayashi M,Goto Y,et al.Regulatory mechanisms of hypoxia-inducible factor 1 activity:Two decades of knowledge[J].Cancer Sci,2018,109(3):560-571.DOI:10.1111/cas.13483.
[48]Boddy JL,Fox SB,Han C,et al.The androgen receptor is significantly associated with vascular endothelial growth factor and hypoxia sensing via hypoxia-inducible factors HIF-1a,HIF-2a,and the prolyl hydroxylases in human prostate cancer[J].Clin Cancer Res,2005,11(21):7658-7663.DOI:10.1158/1078-0432.CCR-05-0460.
[49]Godet I,Mamo M,Thurnheer A,et al.Post-hypoxic cells promote metastatic recurrence after chemotherapy treatment in TNBC[J].Cancers (Basel),2021,13(21):5509.DOI:10.3390/Cancers 13215509.
[50]Noh S,Kim JY,Koo JS.Metabolic differences in estrogen receptor-negative breast cancer based on androgen receptor status[J].Tumour Biol,2014,35(8):8179-8192.DOI:10.1007/s13277-014-2103-x.
[51]Wang F,Chang M,Shi Y,et al.Down-regulation of hypoxia-inducible factor-1 suppresses malignant biological behavior of triple-negative breast cancer cells[J].Int J Clin Exp Med,2014,7(11):3933-3940.
[52]Nassan MA,Soliman MM,Ismail SA,et al.effect of taraxacum officinale extract on PI3K/Akt pathway in DMBA-induced breast cancer in albino rats[J].Biosci Rep,2018,38(6):BSR20180334.DOI:10.1042/BSR20180334.
[53]Du J,Yang M,Chen S,et al.PDK1 promotes tumor growth and metastasis in a spontaneous breast cancer model[J].Oncogene,2016,35(25):3314-3323.DOI:10.1038/onc.2015.393.
[54]Thulasiraman P,Mcandrews DJ,Mohiudddin IQ.Curcumin restores sensitivity to retinoic acid in triple negative breast cancer cells[J].BMC Cancer,2014,14:724.DOI:10.1186/1471-2407-14-724.
[55]Emmanouilidi A,Falasca M.Targeting PDK1 for chemosensitization of cancer cells[J].Cancers (Basel),2017,9(10):140.DOI:10.3390/cancers9100140.
[56]Shi Y,Yang F,Sun Z,et al.Differential microRNA expression is associated with androgen receptor expression in breast cancer[J].Mol Med Rep,2017,15(1):29-36.DOI:10.3892/mmr.2016.6019.
[57]Angajala A,Hughley R,Shweta T,et al.Abstract A04:identification of differentially expressed micro-RNAs in African American women with quadruple-negative breast cancer[J].Cancer Epidemiol Biomarkers Prev,2018,27 (7_Supplement):A04.DOI:10.1158/1538-7755.DISP17-A04.
[58]Sun S,Ma J,Xie P,et al.Hypoxia-responsive miR-141-3p is involved in the progression of breast cancer via mediating the HMGB1/HIF-1alpha signaling pathway[J].J Gene Med,2020,22(10):e3230.DOI:10.1002/jgm.3230.
[59]Peluffo G,Subedee A,Harper NW,et al.EN1 is a transcriptional dependency in triple-negative breast cancer associated with brain metastasis[J].Cancer Res,2019,79(16):4173-4183.DOI:10.1158/0008-5472.CAN-18-3264.
[60]Kim YJ,Sung M,Oh E,et al.Engrailed 1 overexpression as a potential prognostic marker in quintuple-negative breast cancer[J].Cancer Biol Ther,2018,19(4):335-345.DOI:10.1080/15384047.2018.1423913.
[61]Sorolla A,Wang E,Clemons TD,et al.Triple-hit therapeutic approach for triple negative breast cancers using docetaxel nanoparticles,EN1-iPeps and RGD peptides[J].Nanomedicine,2019,20:102003.DOI:10.1016/j.nano.2019.04.006.
[62]Wang Z,Fukushima H,Inuzuka H,et al.Skp2 is a promising therapeutic target in breast cancer[J].Front Oncol,2012,1(57):57.DOI:10.3389/fonc.2011.00057.
[63]Li B,Lu W,Yang Q,et al.Skp2 regulates androgen receptor through ubiquitin-mediated degradation independent of Akt/mTOR pathways in prostate cancer[J].Prostate,2014,74(4):421-432.DOI:10.1002/pros.22763.
[64]Sun YJ,Wang XK,Li BJ.S-phase kinase-associated protein 2 expression interference inhibits breast cancer cell proliferation[J].Genet Mol Res,2015,14(3):9244-9252.DOI:10.4238/2015.August.10.4.
[65]Wu T,Gu X,Cui H.Emerging roles of SKP2 in cancer drug resistance[J].Cells,2021,10(5):1147.DOI:10.3390/cells10051147.
[66]Zhang F,Wang JH,Zhao MS.Dynamic monocyte chemoattractant protein-1 level as predictors of perceived pain during first and second phacoemulsification eye surgeries in patients with bilateral cataract[J].BMC Ophthalmol,2021,21(1):133.DOI:10.1186/12886-021-01880-z.
[67]Fang WB,Yao M,Brummer G,et al.Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment[J].Oncotarget,2016,7(31):49349-49367.DOI:10.18632/oncotarget.9885.
[68]Soto E,Chavarri GY,Leon RE,et al.Tumor-associated neutrophils in breast cancer subtypes[J].Asian Pac J Cancer Prev,2017,18(10):2689-2693.DOI:10.22034/APJCP.2017.18.10.2689.
[69]Sousa S,Brion R,Lintunen M,et al.Human breast cancer cells educate macrophages toward the M2 activation status[J].Breast Cancer Res,2015,17:101.DOI:10.1186/s13058-015-0621-0.
[70]Dannenmann SR,Thielicke J,Stockli M,et al.Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma[J].Oncoimmunology,2013,2(3):e23562.DOI:10.4161/onci.23562.
[71]Rangel-Sosa MM,Aguilar-Cordova E,Rojas-Martinez A.Immu-notherapy and gene therapy as novel treatments for cancer[J].Colomb Med (Cali),2017,48(3):138-147.DOI:10.25100/cm.v48i3.2997.
[72]Gucalp A,Tolaney S,Isakoff SJ,et al.Phase Ⅱ trial of bicalutamide in patients with androgen receptor-positive,estrogen receptor-negative metastatic breast cancer[J].Clin Cancer Res,2013,19(19):5505-5512.DOI:10.1158/1078-0432.CCR-12-3327.
[73]Farrow JM,Yang JC,Evans CP.Autophagy as a modulator and target in prostate cancer[J].Nat Rev Urol,2014,11(9):508-516.DOI:10.1038/nrurol.2014.196.
[74]Tran C,Ouk S,Clegg N J,et al.Development of a second-generation antiandrogen for treatment of advanced prostate cancer[J].Science,2009,324(5928):787-790.DOI:10.1126/science.1168175.
[75]Moilanen AM,Riikonen R,Oksala R,et al.Discovery of ODM-201,a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies[J].Sci Rep,2015,5:12007.DOI:10.1038/srep12007.
[76]Agarwal N,Di Lorenzo G,Sonpavde G,et al.New agents for prostate cancer[J].Ann Oncol,2014,25(9):1700-1709.DOI:10.1093/annonc/mdu038.
[77]De-Kruijff IE,Sieuwerts AM,Onstenk W,et al.Androgen receptor expression in circulating tumor cells of patients with metastatic breast cancer[J].Int J Cancer,2019,145(4):1083-1089.DOI:10.1002/ijc.32209.
[78]Narayanan R,Ahn S,Cheney MD,et al.Selective androgen receptor modulators (SARMs) negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling[J].PLoS One,2014,9(7):e103202.DOI:10.1371/journal.pone.0103202.
[79]Vontela N,Koduri V,Schwartzberg LS,et al.Selective androgen receptor modulator in a patient with hormone-positive metastatic breast cancer[J].J Natl Compr Canc Netw,2017,15(3):284-287.DOI:10.6004/jnccn.2017.0029.
[80]Li H,Song G,Zhou Q,et al.Activity of preclinical and phase I clinical trial of a novel androgen receptor antagonist GT0918 in metastatic breast cancer[J].Breast Cancer Res Treat,2021,189(3):725-736.DOI:10.1007/s10549-021-06345-x.
[81]Prekovic S,Van den Broeck T,Moris L,et al.Treatment-induced changes in the androgen receptor axis:Liquid biopsies as diagnostic/prognostic tools for prostate cancer[J].Mol Cell Endocrinol,2018,462(PtA):56-63.DOI:10.1016/j.mce.2017.08.020.
[82]Baccelli I,Schneeweiss A,Riethdorf S,et al.Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay[J].Nat Biotechnol,2013,31(6):539-544.DOI:10.1038/nbt.2576.
[83]Kono M,Fujii T,Lyons GR,et al.Impact of androgen receptor expression in fluoxymesterone-treated estrogen receptor-positive metastatic breast cancer refractory to contemporary hormonal therapy[J].Breast Cancer Res Treat,2016,160(1):101-109.DOI:10.1007/s10549-016-3986-6.
[84]Kono M,Fujii T,Lim B,et al.Androgen receptor function and androgen receptor-targeted therapies in breast cancer:a review[J].JAMA Oncol,2017,3(9):1266-1273.DOI:10.1001/jamaoncol.2016.4975.
[85]De Laere B,Van Dam PJ,Whitington T,et al.Comprehensive profiling of the androgen receptor in liquid biopsies from castration-resistant prostate cancer reveals novel intra-AR structural variation and splice variant expression patterns[J].Eur Urol,2017,72(2):192-200.DOI:10.1016/j.eururo.2017.01.011.
[86]Nanda R,Chow LQ,Dees EC,et al.Pembrolizumab in patients with advanced triple-negative breast cancer:phase Ib KEYNOTE-012 study[J].J Clin Oncol,2016,34(21):2460-2467.DOI:10.1200/JCO.2015.64.8931.
(收稿日期:2022-02-22)