韩帆 焦倩 杜希恂 阎春玲 姜宏 陈曦
[摘要]目的探讨不同月龄A53T转基因(A53T)小鼠脊髓背根神经节(DRG)中α-突触核蛋白(α-Syn)表达水平的变化。方法6月龄和12月龄野生型(WT)小鼠和A53T小鼠经乌拉坦腹腔麻醉后处死,在体视显微镜下取出胸段、腰段和荐段的DRG组织,采用蛋白免疫印迹法检测DRG中α-Syn的表达水平。结果与相同月龄WT小鼠相比,6月龄及12月龄A53T小鼠DRG中α-Syn表达量显著增加(F=59.164、55.681,P<0.01);与6月龄A53T小鼠相比,12月龄A53T小鼠DRG中α-Syn的表达量显著增加(F=13.802,P<0.05)。结论A53T小鼠DRG中α-Syn表达量高于同月龄WT小鼠,且其表达量随年龄增长而增加。
[关键词]α突触核蛋白;帕金森病;小鼠,转基因;神经节,脊
[中图分类号]R338.2[文献标志码]A[文章编号]2096-5532(2023)03-0337-04
doi:10.11712/jms.2096-5532.2023.59.075[开放科学(资源服务)标识码(OSID)]
[网络出版]https://kns.cnki.net/kcms2/detail/37.1517.R.20230719.1618.003.html;2023-07-2014:53:22
EXPRESSION OF α-SYNUCLEIN IN THE DORSAL ROOT GANGLION OF A53T MICE WITH DIFFERENT AGES IN MONTHS HAN Fan, JIAO Qian, DU Xixun, YAN Chunling, JIANG Hong, CHEN Xi (State Key Discipline: Physiology (in Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the expression level of α-synuclein (α-Syn) in the dorsal root ganglion (DRG) of A53T transgenic mice with different ages in months. MethodsWild-type (WT) mice and A53T mice, aged 6 or 12 months, were sacrificed after intraperitoneal anesthesia with urethane. DRG tissue samples of the thoracic, lumbar, and sacral segments were collected under a stereomicroscope, and Western blotting was used to measure the expression level of α-Syn. ResultsCompared with the WT mice with the same age in months, the A53T mice aged 6 or 12 months had a significant increase in the expression level of α-Syn in DRG (F=59.164,55.681;P<0.01). Compared with the A53T mice aged 6 months, the A53T mice aged 12 months had a significant increase in the expression level of α-Syn in DRG (F=13.802,P<0.05). ConclusionA53T mice have a higher expression level of α-Syn in DRG than WT mice with the same age in months, and the expression level of α-Syn increases with age.
[KEY WORDS]alpha-synuclein; Parkinson disease; mice, transgenic; ganglia, spinal
帕金森病(PD)是一種主要影响运动功能的神经退行性疾病,其发病率随着年龄增加而逐渐上升[1-3]。目前,PD发生的确切原因和机制仍不完全清楚,但大量研究表明,基因突变是重要的因素之一[4-7]。A53T转基因(A53T)小鼠是一种常见的PD模型小鼠,其体内携带的人类A53T突变型α-突触核蛋白(α-Syn)基因可改变α-Syn的结构,使原本可溶性的α-Syn单体转变为不溶性的多聚体,可在动物体内重现由α-Syn聚集起始的PD病理过程[8-12]。根据BRAAK学说可知,胃肠道可能是α-Syn发生病变的起始部位[13-16],且这些病理性α-Syn会通过外周神经系统逐渐向中枢传播[17]。已有大量实验证实迷走神经在α-Syn的肠-脑传播中承担主要作用,但是消化道与中枢之间还存在其他神经联络,如交感神经,其传入纤维的胞体主要汇聚在脊髓背根神经节(DRG)中。为明确DRG中是否也存在着α-Syn高表达,本实验观察了不同月龄A53T小鼠DRG中α-Syn的含量变化,从而为交感神经传入纤维参与α-Syn从胃肠道传播至中枢的可能作用提供证据。现将结果报告如下。
1材料和方法
1.1实验材料
1.1.1实验动物A53T小鼠(品系名称:B6;C3-Tg(Prnp-SNCA*A53T)83Vle/J),SPF级,购于南京大学模式动物研究所。小鼠饲养于清洁级动物房中,可自由进食饮水,饲养环境为光照模拟自然昼夜节律,12 h明暗交替,温度保持在20~24 ℃,相对湿度保持在40%~60%。选用6月龄和12月龄的纯合子A53T小鼠作为实验组,同窝相同月龄的野生型(WT)小鼠作为对照组。
1.1.2试剂α-Syn抗体、β-tubulin抗体购于美国Cell Signaling Technology公司;山羊抗兔和山羊抗鼠抗体购于英国Thermo Fisher Scientific公司;0.45 μm PVDF转印膜、ECL化学发光液均购于美国Millipore公司:RIPA裂解液购于中国Com Win Biotech公司。A53T小鼠基因型鉴定PCR试剂盒购于中国Vazyme生物科技有限公司。
1.2实验方法
1.2.1A53T小鼠基因鉴定A53T纯合子小鼠由A53T杂合子小鼠配种育得,饲养至1月龄进行分笼和鉴定。于尾尖部截取0.5 cm长鼠尾组织提取DNA,按照试剂盒(Taq Pro HS U+Probe Master Mix,Vazyme生物科技有限公司)说明配制实时荧光定量PCR反应体系并进行实验。根据PCR数据计算△Ct值,通过比较实验组与对照组纯合子目的基因的△Ct值,确定基因型。
1.2.2蛋白免疫印跡法检测DRG中α-Syn表达小鼠经乌拉坦腹腔麻醉处死后取出脊柱,于体视显微镜下取出胸段、腰段和荐段的DRG组织放入EP管中,先用剪刀将组织剪碎,再加入配制好的RIPA裂解液,充分磨碎组织。冰上静置裂解30 min后,应用高速离心机在4 ℃下以12 000 r/min离心20 min,吸取上清液转移至新的1.5 mL EP管中,利用BCA试剂盒和酶标仪进行蛋白质定量,计算上样量。按比例加入loading buffer,充分混匀,100 ℃煮沸10 min使蛋白充分变性,-20 ℃冻存。蛋白样品经SDS-PAGE电泳(90 V、30 min,120 V、60 min)分离后,湿法转至孔径为0.45 μm的PVDF膜上,按蛋白Marker将目标蛋白裁剪出来,经脱脂奶粉封闭、一抗孵育、HRP-IgG二抗孵育后,用TBST缓冲液洗净,将膜与ECL超敏发光液反应后置于凝胶成像系统内进行观察并拍摄图像。采用Image J分析软件对蛋白条带进行灰度计算,目的蛋白表达水平以α-Syn和β-tubuling条带灰度值的比值表示。
1.3统计学处理
应用SPSS 25.0软件进行统计学处理。小鼠DRG中α-Syn的表达量以±s表示,不同月龄WT和A53T小鼠DRG中α-Syn表达水平比较采用析因设计的方差分析,P<0.05表示差异具有统计学意义。
2结果
2.1A53T小鼠鉴定
PCR结果显示,对照组和实验组纯合子目的基因△Ct平均值分别为5.84±0.57和6.11±0.47。△Ct值大于对照组纯合子目的基因△Ct值的小鼠为A53T纯合子小鼠。共选取10只A53T纯合子小鼠进行实验。
2.2不同月龄WT和A53T小鼠DRG中α-Syn表达比较
蛋白免疫印迹法检测结果显示,6月龄WT组(n=6)、6月龄A53T组(n=6)、12月龄WT组(n=4)和12月龄A53T组(n=4)小鼠DRG中α-Syn表达水平分别为0.18±0.07、1.09±0.21、0.46±0.22和1.63±0.35。析因设计方差分析结果显示:F月龄=17.417,P<0.01;F组别=112.168,P<0.01;F月龄×组别=1.727,P>0.05。与同月龄WT组小鼠相比,6月龄、12月龄A53T组小鼠DRG中α-Syn表达量显著增高,分别增加了505.56%和254.35%,差异均具有统计学意义(F=59.164、55.681,P<0.01);12月龄A53T组小鼠DRG中α-Syn表达量比6月龄A53T组小鼠增加了50.46%,两组相比差异具有统计学意义(F=13.802,P<0.05)。表明A53T小鼠DRG中α-Syn的表达远高于同月龄WT小鼠,且随年龄的增长,其表达量增加。
3讨论
大量临床数据表明,在典型的PD运动症状出现之前,胃肠道功能障碍就已经在PD病人身上长期存在,包括便秘、胃轻瘫等[18-24]。德国的BRAAK教授于2003年提出了经典的PD分期学说,该学说指出胃肠道是病理性α-Syn蛋白传播的起源地,并且通过肠脑轴逐渐蔓延至中枢神经系统[25-26]。其中,α-Syn通过迷走神经传播进入迷走神经运动背核(DMV)是肠脑轴传播的重要组成部分。后续有实验表明,迷走神经切断术可以使PD的发展进程大幅减缓,并且使PD的患病风险大大降低[27-30]。但该法仍不能完全杜绝PD,这提示α-Syn在胃肠与中枢之间传播可能还有其他的通道。支配消化道的神经除迷走神经外,还有交感神经,其传入纤维的胞体主要汇聚在脊髓DRG中,可感受消化道内机械刺激(如管壁扩张、胃肠道蠕动等)、化学刺激(如管腔内毒性物质、酸碱度等)以及温度的变化等,并将这些信息传入中枢神经系统。与迷走神经类似,交感神经在消化道和中枢神经系统之间也起桥梁作用,那么它是否在α-Syn的传播过程中起某些作用呢?本研究对此进行了探讨。
本实验选取小鼠胸椎、腰椎和荐椎处的DRG组织进行检测,来自消化道的交感神经传入纤维主要通过以上部位进入脊髓,可充分反映交感神经传入纤维在病理性α-Syn肠脑传播中的作用。实验结果显示,与同月龄WT组小鼠相比,6月龄、12月龄A53T组小鼠DRG中α-Syn表达量显著增加,且随年龄的增长,A53T小鼠DRG中α-Syn表达量会进一步增加,表明交感神经中确实存在病理性α-Syn。值得注意的是,本实验所取组织来源于A53T小鼠,该小鼠是一种携带人类A53T突变型α-Syn基因的PD模型小鼠,其体内存在广泛的人A53T突变型α-Syn过表达。那么,本实验中小鼠DRG中α-Syn增多的原因,是否仅与该部位的基因突变相关呢?已有实验表明,3月龄A53T小鼠小肠组织中α-Syn的表达已经明显升高,且出现了消化道功能障碍,但此时中枢神经系统内并未出现病理性的α-Syn,此种情况甚至会持续到6月龄以后,提示老龄A53T小鼠中枢病理性α-Syn的增多可能亦与该蛋白从外周至中枢的传播有关[31-33]。故作者推测A53T小鼠DRG中α-Syn的增多也可能与交感神经在此传播过程中的作用相关。有其他研究也报道了交感神经的可能作用,如PD病人肾上腺中存在α-Syn的沉积,肾上腺髓质中包含由交感神经胞体组成的神经节,在这些神经节及发出的神经纤维中均观察到α-Syn聚集的现象[34-35];在膀胱和生殖器官附近的交感神经神经节中同样出现了路易小体[24,36]。这些证据均表明交感神经可能参与了PD进展,并且可能与病理性α-Syn的传播有关。
綜上所述,A53T小鼠DRG中α-Syn的表达量显著增加,且其表达量随年龄的增长同步上升,提示交感神经在PD进展中可能发挥作用。本实验结果可为PD发生机制研究提供实验依据,同时为通过阻断α-Syn由外周向中枢传播来治疗PD提供了新的思路。
[参考文献]
[1]WERNER M H, OLANOW C W. Parkinsons disease modification through abl kinase inhibition: an opportunity[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2022,37(1):6-15.
[2]TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinsons disease[J]. The Lancet Neuro-logy, 2021,20(5):385-397.
[3]LI G, MA J F, CUI S S, et al. Parkinsons disease in China: a forty-year growing track of bedside work[J]. Translational Neurodegeneration, 2019,8:22.
[4]FARROW S L, SCHIERDING W, GOKULADHAS S, et al. Establishing gene regulatory networks from Parkinsons di-sease risk loci[J]. Brain: a Journal of Neurology, 2022,145(7):2422-2435.
[5]ZHOU S Q, TIAN Y, SONG X J, et al. Brain proteome-wide and transcriptome-wide asso-ciation studies, Bayesian coloca-lization, and Mendelian randomization analyses reveal causal genes of Parkinsons disease[J]. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 2023,78(4):563-568.
[6]YI M H, LI J X, JIAN S J, et al. Quantitative and causal analysis for inflammatory genes and the risk of Parkinsons di-sease[J]. Frontiers in Immunology, 2023,14:1119315.
[7]YE H, ROBAK L A, YU M G, et al. Genetics and pathoge-nesis of Parkinsons syndrome[J]. Annual Review of Pathology, 2023,18:95-121.
[8]KILPELINEN T, JULKU U H, SVARCBAHS R, et al. Behavioural and dopaminergic changes in double mutated human A30P*A53T alpha-synuclein transgenic mouse model of Parkinsons disease[J]. Scientific Reports, 2019,9(1):17382.
[9]ZHONG J X, TANG G, ZHU J C, et al. Single-cell brain atlas of Parkinsons disease mouse model[J]. Journal of Gene-tics and Genomics, 2021,48(4):277-288.
[10]ABELIOVICH A, RHINN H. Parkinsons disease: guilt by genetic association[J]. Nature, 2016,533(7601):40-41.
[11]HARVEY B K, WANG Y, HOFFER B J. Transgenic rodent models of Parkinsons disease[J]. Acta Neurochirurgica Supplement, 2008,101:89-92.
[12]GIASSON B I, DUDA J E, QUINN S M, et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein[J]. Neuron, 2002,34(4):521-533.
[13]ZENG J Q, WANG X C, PAN F, et al. The relationship between Parkinsons disease and gastrointestinal diseases[J]. Frontiers in Aging Neuroscience, 2022,14:955919.
[14]JONES J D, RAHMANI E, GARCIA E, et al. Gastrointestinal symptoms are predictive of trajectories of cognitive functioning in de novo Parkinsons disease[J]. Parkinsonism & Related Disorders, 2020,72:7-12.
[15]PIETRUCCI D, CERRONI R, UNIDA V, et al. Dysbiosis of gut microbiota in a selected population of Parkinsons patients[J]. Parkinsonism & Related Disorders, 2019,65:124-130.
[16]VAN DEN BERGE N, FERREIRA N, GRAM H, et al. Evidence for bidirectional and trans-synaptic parasympathetic andsympathetic propagation of alpha-synuclein in rats[J]. Acta Neuropathologica, 2019,138(4):535-550.
[17]ZHU X L, LI B, LOU P C, et al. The relationship between the gut microbiome and neurodegenerative diseases[J]. Neuroscience Bulletin, 2021,37(10):1510-1522.
[18]WISHART S, MACPHEE G J A. Evaluation and management of the non-motor features of Parkinsons disease[J]. Therapeutic Advances in Chronic Disease, 2011,2(2):69-85.
[19]HEIMRICH K G, SCHNENBERG A, SANTOS-GARCA D, et al. The impact of nonmotor symptoms on health-related quality of life in Parkinsons disease: a network analysis approach[J]. Journal of Clinical Medicine, 2023,12(7):2573.
[20]SEPPI K, RAY CHAUDHURI K, COELHO M, et al. Update on treatments for nonmotor symptoms of Parkinsons disease-an evidence-based medicine review[J]. Movement Di-sorders: Official Journal of the Movement Disorder Society, 2019,34(2):180-198.
[21]ZIEMSSEN T, REICHMANN H. Non-motor dysfunction in Parkinsons disease[J]. Parkinsonism & Related Disorders, 2007,13(6):323-332.
[22]WAKABAYASHI K, TAKAHASHI H, TAKEDA S, et al. Parkinsons disease: the presence of Lewy bodies in Auerbachs and Meissners plexuses[J]. Acta Neuropathologica, 1988,76(3):217-221.
[23]ZHOU Y T, SU Y S, XU W H, et al. Constipation increases disability and decreases dopamine levels in the nigrostriatal system through gastric inflammatory factors in Parkinsons disease[J]. Current Neurovascular Research, 2019,16(3):241-249.
[24]ZHONG C B, CHEN Q Q, HAIKAL C, et al. Age-dependent alpha-synuclein accumulation and phosphorylation in the ente-ric nervous system in a transgenic mouse model of Parkinsons disease[J]. Neuroscience Bulletin, 2017,33(5):483-492.
[25]HAWKES C H, DEL TREDICI K, BRAAK H. Parkinsons disease: a dual-hit hypothesis[J]. Neuropathology and Applied Neurobiology, 2007,33(6):599-614.
[26]ARMSTRONG M J, OKUN M S. Diagnosis and treatment of Parkinson disease: a review[J]. JAMA, 2020,323(6):548-560.
[27]KIM S, KWON S H, KAM T I, et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain mo-dels Parkinsons disease[J]. Neuron, 2019,103(4):627-641.e7.
[28]SVENSSON E, HORVTH-PUH E, THOMSEN R W, et al. Vagotomy and subsequent risk of Parkinsons disease[J]. Annals of Neurology, 2015,78(4):522-529.
[29]REDDYMASU S C, BONINO J, MCCALLUM R W. Gastroparesis secondary to a demyelinating disease: a case series[J]. BMC Gastroenterology, 2007,7:3.
[30]LIU B J, FANG F, PEDERSEN N L, et al. Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study[J]. Neurology, 2017,88(21):1996-2002.
[31]SALAWU F K, DANBURAM A, OLOKOBA A B. Non-motor symptoms of Parkinsons disease: diagnosis and management[J]. Nigerian Journal of Medicine: Journal of the Natio-nal Association of Resident Doctors of Nigeria, 2010,19(2):126-131.
[32]KUO Y M, LI Z S, JIAO Y, et al. Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated alpha-synuclein gene mutations precede central nervous system changes[J]. Human Molecular Genetics, 2010,19(9):1633-1650.
[33]ROTA L, PELLEGRINI C, BENVENUTI L, et al. Constipation, deficit in colon contractions and alpha-synuclein inclusions within the colon precede motor abnormalities and neurodegeneration in the central nervous system in a mouse model of alpha-synucleinopathy[J]. Translational Neurodegeneration, 2019,8:5.
[34]WAKABAYASHI K, HANSEN L A, MASLIAH E. Cortical Lewy body-containing neurons are pyramidal cells: laser confocal imaging of double-immunolabeled sections with anti-ubi-quitin and SMI32[J]. Acta Neuropathologica, 1995,89(5):404-408.
[35]FUMIMURA Y, IKEMURA M, SAITO Y, et al. Analysis of the adrenal gland is useful for evaluating pathology of the peripheral autonomic nervous system in lewy body disease[J]. Journal of Neuropathology and Experimental Neurology, 2007,66(5):354-362.
[36]BEACH T G, ADLER C H, SUE L I, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders[J]. Acta Neuropathologica, 2010,119(6):689-702.
(本文編辑马伟平)