袁海龙 王雅迪
摘要:考虑一类满足齐次Neumann边界条件的营养-微生物扩散模型.在满足Hopf分支存在性的条件下,利用中心流形定理和规范型理论,讨论了扩散系统Hopf分支方向及空间非齐次分支周期解的稳定性.
關键词:营养-微生物模型;扩散系统;周期解;Hopf分支;空间非齐次;稳定性
中图分类号:O 175.26 文献标志码:A 文章编号:1001-988Ⅹ(2023)04-0016-07
参考文献:
[1] BAURMANN M,FEUDEL U.Turing patterns in a simple model of a nutrient-microorganism system in the sediment[J].Ecol Complex,2004,1:77.
[2] CAO Qian,WU Jian-hua,WANG Yan-e.Bifurcation solutions in the diffusive minimal sediment[J].Comput Math Appl,2019,77:888.
[3] CAO Qian,WU Jian-hua.Patterns and dynamics in the diffusive model of a nutrient-microorganism system in the sediment[J].Nonlinear Anal:RWA,2019,49:331.
[4] JIN Jia-yin,SHI Jun-ping,WEI Jun-jie,et al.Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of CIMA chemical reactions[J].Rocky Mt J Math,2013,43:1637.
[5] YI Feng-qi,WEI Jun-jie,SHI Jun-ping.Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system[J].J Differential Equations,2009,246:1944.
[6] CHEN Shan-shan,SHI Jun-ping,WEI Jun-jie.The effect of delay on a diffusive predator-prey system with Holling type-Ⅱ predator functional response[J].Commun Pur Appl Anal,2013,12:481.
[7] HASSARD B D,KAZARINOFF N D,WAN Y H.Theory and Applications of Hopf Bifurcation[M].Cambridge:Cambridge University Press,1981.
(责任编辑 马宇鸿)