求解耦合非线性Klein-Gordon-Schr?dinger方程的能量稳定方法

2023-07-20 01:02:54郭姣姣庄清渠
华侨大学学报(自然科学版) 2023年4期

郭姣姣 庄清渠

摘要: 研究基于指数标量辅助变量方法的耦合非线性Klein-Gordon-Schr?dinger方程有效数值方法.首先,采用指数标量辅助变量处理方程的非线性项,构造求解方程的无条件能量稳定格式;然后,对方程在时间方向上采用Crank-Nicolson格式进行离散,在空间方向上采用紧致差分格式进行离散,证明全离散格式的修正能量守恒律.最后,通过数值算例进行验证.结果表明:文中格式具有有效性,修正能量具有守恒性.

关键词: 耦合非线性Klein-Gordon-Schr?dinger方程; 指数标量辅助变量方法; 修正能量; 守恒律

中图分类号: O 241.8文献标志码: A   文章编号: 1000-5013(2023)04-0533-08

Energy Stable Method for Coupled Nonlinear Klein-Gordon-Schr?dinger Equation

GUO Jiaojiao, ZHUANG Qingqu

(School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China)

Abstract:

The efficient numerical method of coupled nonlinear Klein-Gordon-Schr?dinger equation based on exponential scalar auxiliary variable method is studied. Firstly, the nonlinear terms of the equation are treated with exponential scalar auxiliary variables, and an unconditional energy stable scheme is constructed to the solution of the equation. Then, the equation is discretized by Crank-Nicolson scheme in time direction and by compact difference scheme in space direction, the modified energy conservation law of the full discrete scheme is proved. Finally, it is verified by numerical examples that the proposed scheme is effective and the modified energy is conserved.

Keywords:

coupled nonlinear Klein-Gordon-Schr?dinger equation; exponential scalar auxiliary variable method; modified energy; conservation law

耦合非線性Klein-Gordon-Schr?dinger(KGS)方程描述了复中子场和中性介子场之间相互作用的经典动力学过程,在量子场理论中起着重要作用[1].近几十年来,KGS方程得到较为广泛的关注与研究.夏静娜等[2]利用齐次平衡原则导出KGS方程的精确孤立波解.Xiang[3]构造具有周期初值的KGS方程的守恒型谱逼近格式,并进行误差分析.Zhang[4]对KGS方程构造带参数θ的守恒型差分格式,并进行收敛性分析.Chen等[5]利用Richardson外推法构造一种线性隐式有限差分格式,该格式在时间方向上具有二阶精度,在空间方向上具有八阶精度.Hong等[6]对KGS方程的5种差分格式的经典保守性质进行比较,并对比这些格式的数值. Zhang等[7]基于两种不同的离散梯度得到KGS方程的两种能量守恒格式.

基于近年发展起来的标量辅助变量(SAV) 方法[8-9]及拉格朗日乘子法[10-11],Zhang等[12]构造了求解KGS方程的3种保结构数值求解格式,并对3种格式进行比较.基于拉格朗日乘子法的格式需要求解3组常系数线性系统及1个非线性代数系统,而基于传统的SAV方法的格式只需求解两组常系数线性系统.然而,为了保证格式的稳定性,传统的SAV方法需在计算前给定一个常数C0(C0>0),使模型满足非线性自由能与C0的和大于零.由于C0的取值会影响数值逼近结果的精度[13],为了消除传统的SAV方法中C0取值的影响,Liu等[14]在SAV方法的基础上提出求解相场模型的指数标量辅助变量 (ESAV)方法,严格证明ESAV半离散格式的无条件能量稳定性,并给出详细的计算过程.基于此,本文提出一种求解耦合非线性Klein-Gordon-Schr?dinger方程的能量稳定方法.

非对称碰撞.式(1)在初始条件下,取一对非对称碰撞孤立子v1=0.2,x1=-5和v2=-0.7,x2=13,Ω=[-40,40],h=0.1,τ=0.01,T=50.孤立波|ψ|,φ的非对称碰撞,如图11,12所示.

由图11,12可知:两孤立波在发生碰撞后分离,|ψ|,φ的非对称碰撞也是有弹性的,碰撞后|ψ|,φ均有余波产生.

两孤立波在非对称碰撞下修正能量和修正能量误差,如图13,14所示.

由图13,14可知:格式依旧保持修正能量E守恒.

4 结束语

利用ESAV方法构造耦合非线性KGS方程的能量稳定数值求解格式,理论上证明了全离散格式的修正能量守恒定律,并通过数值实验验证格式的有效性及修正能量的守恒性.参考文献:

[1] FUKUDA I,TSUTSUMI M.On coupled Klein-Gordon-Schr?dinger equations,Ⅱ[J].Journal of Mathematical Analysis and Applications,1978,66(2):358-378.DOI:10.1016/0022-247X(78)90239-1.

[2] 夏静娜,韩淑霞,王明亮.Klein-Gordon-Schr?dinger方程组的精确孤立波解[J].应用数学和力学,2002,23(1):52-58.DOI:10.3321/j.issn:1000-0887.2002.01.007.

[3] XIANG Xinmin.Spectral method for solving the system of equations of Schr?dinger-Klein-Gordon field[J].Journal of Computational and Applied Mathematics,1988,21:161-171.DOI:10.1016/0377-0427(88)90265-8.

[4] ZHANG Luming.Convergence of a conservative difference scheme for a class of Klein-Gordon-Schr?dinger equations in one space dimension[J].Applied Mathematics and Computation,2005,163(1):343-355.DOI:10.1016/j.amc.2004.02.010.

[5] CHEN Juan,CHEN Fangqi.Convergence of a high-order compact finite difference scheme for the Klein-Gordon-Schr?dinger equations[J].Applied Numerical Mathematics,2019,143:133-145.DOI:10.1016/j.apnum.2019.03.004.

[6] HONG Jialin,JIANG Shanshan,KONG Linghua,et al.Numerical comparison of five difference schemes for coupled Klein-Gordon-Schr?dinger equations in quantum physics[J].Journal of Physics A: Mathematical and Theoretical,2007,40:9125-9135.

[7] ZHANG Jingjing,KONG Linghua.New energy-preserving schemes for Klein-Gordon-Schr?dinger equations[J].Applied Mathematical Modelling,2016,40(15/16):6969-6982.DOI:10.1016/j.apm.2016.02.026.

[8] SHEN Jie,XU Jie,YANG Jiang.The scalar auxiliary variable (SAV) approach for gradient flows[J].Journal of Computational Physics,2018,353:407-416.DOI:10.1016/j.jcp.2017.10.021.

[9] WANG Rui,JI Yanzhou,SHEN Jie,et al.Application of scalar auxiliary variable scheme to phase-field equations[J].Computational Materials Science,2022,212:111556.DOI:10.1016/j.commatsci.2022.111556.

[10] CHENG Qing,LIU Chun,SHEN Jie.A new Lagrange multiplier approach for gradient flows[J].Computer Methods in Applied Mechanics and Engineering,2020,367:113070.DOI:10.1016/j.cma.2020.113070.

[11] CHENG Qing,SHEN Jie.Global constraints preserving scalar auxiliary variable schemes for gradient flows[J].SIAM Journal on Scientific Computing,2020,42(4):A2489-A2513.DOI:10.1137/19M1306221.

[12] ZHANG Yanrong,SHEN Jie.Efficient structure preserving schemes for the Klein-Gordon-Schr?dinger equations[J].Journal of Scientific Computing,2021,47:89-47.DOI:10.1007/s10915-021-01649-y.

[13] LIN Lianlei,YANG Zhiguo,DONG Suchuan.Numerical approximation of incompressible navier-stokes equations based on an auxiliary energy variable[J].Journal of Computational Physics,2019,388:1-22.DOI:10.1016/j.jcp.2019.03.012.

[14] LIU Zhengguang,LI Xiaoli.The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing[J].SIAM Journal on Scientific Computing,2020,42(3):B630-B655.DOI:10.1137/19M13 05914.

[15] 任全偉,庄清渠.一类四阶微积分方程的紧差分格式[J].华侨大学学报(自然科学版),2014,35(2):232-237.DOI:10.11830/ISSN.1000-5013.2014.02.0232.

[16] 王廷春,郭柏灵.一维非线性 Schr?dinger 方程的两个无条件收敛的守恒紧致差分格式[J].中国科学:数学,2011,41(3):207-233.DOI:10.1360/0120-846.

(责任编辑: 钱筠  英文审校: 黄心中)

收稿日期: 2022-06-22

通信作者: 庄清渠(1980-),男,副教授,博士,主要从事微分方程数值解法的研究.E-mail:qqzhuang@hqu.edu.cn.

基金项目: 国家自然科学基金资助项目(11771083); 福建省自然科学基金资助项目(2021J01306)

http:∥www.hdxb.hqu.edu.cn